DOI:10.26104/NNTIK.2022.40.68.008

Толубаев Ж.О., Тухлиев Д.К.

ФУНКЦИЯЛАРДЫН БИРГЕЛЕШКЕН ПОЛИНОМИАЛДЫК ЖАКЫНДАШЫ ЖАНА $B_2^{(m)}$ МЕЙКИНДИКТЕГИ ЖОГОРКУ ТАРТИБИ ЖӨНҮНДӨ

Толубаев Ж.О., Тухлиев Д.К.

О СОВМЕСТНОМ ПОЛИНОМИАЛЬНОМ ПРИБЛИЖЕНИИ ФУНКЦИЙ И ИХ БОЛЕЕ ВЫСОКОГО ПОРЯДКА В ПРОСТРАНСТВЕ $B_2^{(m)}$

Zh. Tolubaev, D. Tukhliev

ON THE JOINT POLYNOMIAL APPROXIMATION OF FUNCTIONS AND THEIR HIGHER ORDER IN SPACE $B_2^{(m)}$

УДК: 715.5

A(U) — бирдикте анализдердин көптүгү $U:=\{z\in\mathbb{C}:|z|<1\}$ функциялары болсун, $B_2f\in A(U)$ — дын көп функциялары, алар үчүн функциялардын ченеми чектелүү $\|f\|_2:=\|f\|_{B_2}=\left(\frac{1}{\pi}\iint_{(U)}|f(z)|^2d\sigma\right)^{1/2}<\infty$. $f\in A(U)$ кадимки өндүрүштүк тартип үчүн т $\in Nf^{(m)}(z)$ аркылуу белгиленген жана M функциялардын классын киргизүү $B_2^{(m)}:=\{f\in B_2:\|f^{(m)}\|_2<\infty\}$. $E_n(f)_2$ — мыкты мамиле көлөмү $f\in B_2$ комплекстүү алгебралык полиом даражасы $\leq n$. белгилүү E_1 , бардык белгилери үчүн $f\in B_2^{(m)}$ бирдей бар экени белгилүү $E_{n-1}(f)_2\leq \sqrt{\frac{n-m+1}{n+1}}\cdot\frac{1}{\alpha_{n,m}}\cdot E_{n-m-1}(f^{(m)})_2$, каякта $\alpha_{n,m}:=n(n-1)(n-2)\cdots(n-m+1), n\geq m, n, m\in\mathbb{N}$. Бул эмгекте ортолук $E_{n-\nu-1}(f^{(\nu)})_2$ ($\nu=1,2,\cdots,m-1;m\geq 2$) жана мыкты ыкмаларды $E_{n-m-1}(f^{(m)})_2$ улук өндүрүштүк $f^{(m)}$. Аркандай т экенин далилдеп турат, $m,n\in\mathbb{N}$, $\nu\in\mathbb{Z}_+$, канааттандырарлык чектөө $n>m\geq \nu\geq 1$, $m\geq 2$, ар кандай өзгөчөлүктөрү $f\in B_2^{(m)}$ адилеттүүлүк так укук $E_{n-\nu-1}(f^{(\nu)})_2\leq \sqrt{\frac{n-m+1}{n-\nu+1}}\cdot\frac{\alpha_{n,\nu}}{\alpha_{n,m}}\cdot E_{n-m-1}(f^{(m)})_2$, жана анын тиркемеси бир убакта функцияларды жана анын ырааттуу туунду жакындоосун бир экстремалдык тапшырманы аткарууга берилген.

Негизги сөздөр: Колмогоровдун так барабасыздыгы, ортоквадраттык жакындоо, регулярдуу болуу тармактары, арадагы туунду, функциялардын ченеми, бир эле убакта жакындануу, комплекстүү өзгөрүлмө, эң мыкты полиномиалдык жакындоо, экстремалдык милдеттер, Бергман мейкиндиги.

Пусть A(U) - множество аналитических в единичном круге $U:=\{z\in\mathbb{C}:|z|<1\}$ функций, B_2 - множество функций $f\in A(U)$, для которых $\|f\|_2:=\|f\|_{B_2}=\left(\frac{1}{n}\iint_{(U)}|f(z)|^2d\sigma\right)^{1/2}<\infty$. Для $f\in A(U)$ обычную производную порядка $m\in\mathbb{N}$ обозначим через $f^{(m)}(z)$ и введём класс функций $B_2^{(m)}:=\{f\in B_2:\|f^{(m)}\|_2<\infty\}$. $E_n(f)_2$ - величина наилучшего приближения функции $f\in B_2$ комплексными алгебраическими полиномами степени $\leq n$. Известно [1], что для любой функции $f\in B_2^{(m)}$ имеет место неравенство $E_{n-1}(f)_2\leq\sqrt{\frac{n-m+1}{n+1}}\cdot\frac{1}{a_{n,m}}\cdot E_{n-m-1}(f^{(m)})_2$, где $a_{n,m}:=n(n-1)(n-2)\cdots(n-m+1), n\geq m, n, m\in\mathbb{N}$. В данной работе найден ряд точных неравенств между величиной наилучшего приближения промежуточных $E_{n-v-1}(f^{(v)})_2$ ($v=1,2,\cdots,m-1; m\geq 2$) и наилучшего приближения $E_{n-m-1}(f^{(m)})_2$ старшей производной $f^{(m)}$. Доказано, что при любых $m,n\in\mathbb{N}$, $v\in\mathbb{Z}_+$, удовлетворяющих ограничению $n>m\geq v\geq 1, m\geq 2$, для любой функции $f\in B_2^{(m)}$ беспристрастно точное неравенство $E_{n-v-1}(f^{(v)})_2\leq \sqrt{\frac{n-m+1}{n-v+1}}\cdot\frac{a_{n,v}}{a_{n,m}}\cdot E_{n-m-1}(f^{(m)})_2$ и дано её приложение к одной экстремальной задаче одновременного приближения функций и её последовательных производных.

Ключевые слова: точные неравенства Колмогорова, среднеквадратическое приближение, области регулярности, промежуточные производные, норма функций, одновременногоприближения, комплексной переменной, наилучшее полиномиальное приближение, экстремальные задачи, пространство Бергмана.

Let A(U)—set of analytical in a single circle $U:=\{z\in\mathbb{C}:|z|<1\}$ functions, B_2 — multiple functions $f\in A(U)$, for whom $\|f\|_2:=\|f\|_{B_2}=\left(\frac{1}{\pi}\int_{\{U\}}|f(z)|^2d\sigma\right)^{1/2}<\infty$. For $f\in A(U)$ the usual derivative of order $m\in\mathbb{N}$ denote by $f^{(m)}(z)$ and we introduce a class of functions $B_2^{(m)}:=\{f\in B_2:\|f^{(m)}\|_2<\infty\}$. $E_n(f)_2$ - best approximation value of the function $f\in B_2$ complex algebraic polynomials of degree $f\in A(U)$ that for any function $f\in B_2^{(m)}$ there is inequality $f\in A(U)$ the function $f\in B_2$ complex algebraic polynomials of degree $f\in A(U)$ that for any function $f\in B_2^{(m)}$ there is inequality $f\in A(U)$ the function $f\in B_2$ complex algebraic polynomials of degree $f\in A(U)$ that for any function $f\in B_2^{(m)}$ there is inequality $f\in A(U)$ the function $f\in B_2$ complex algebraic polynomials of degree $f\in A(U)$ the usual derivative $f\in A(U)$ the function $f\in B_2^{(m)}$ then $f\in A(U)$ the usual derivative $f\in A(U)$ the usual derivative

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 2, 2022

Key words: exact Kolmogorov inequalities, root-mean-square approximation, regions of regularity, intermediate derivatives, norm of functions, simultaneous approximation, complex variable, best polynomial approximation, extremal problems, Bergman space.

Неравенство, в котором общепризнанных мерок промежуточных производных функций оцениваются через нормы самих функций и общепризнанных мерок её производных больше высочайшего порядка, величаются неравенствами типа Колмогорова и эти неравенства играют вескую роль в во время выяснения экстремальных задач теории аппроксимации.

В данной работе мы обретем свежие четкие неравенства, расценивающие B_2 – норму промежуточных производных $f^{(\nu)}(z)$ ($0 \le \nu \le m$) через B_2 – норму самой функции f(z) и B_2 – норму производной $f^{(m)}(z)$, $m \in \mathbb{N}$. В работе [2] была рассмотрена экстремальная задача о совместном полиномиальном приближении аналитических в единичном круге $U:=\{z\in\mathbb{C}\colon |z|<\}$ функций и их промежных производных более высокого порядка в пространстве B_2 . Здесь мы также продолжим наши исследования, в этом же направлении, докажем новые точные неравенства об общем совместном полиномиальном приближении функций $f\in B_2$ и ее промежных производных более высокого порядка.

Вводим подходящую нам в последующем вспомогательные факты и определения, сквозь A(U) подчеркнем множество аналитических в круге U функций и будем заявлять, что функция $f \in A(U)$ принадлежит пространству B_2 , когда

$$\| f \|_{2} := \| f \|_{B_{2}} = \left(\frac{1}{\pi} \iint_{(U)} |f(z)|^{2} d\sigma \right)^{1/2} < \infty.$$
 (1)

Естественно, что норму (1) возможно писать в следующем варианте

$$\| f \|_2 := \left(\frac{1}{\pi} \int_0^1 \int_0^{2\pi} \rho |f(\rho e^{it})|^2 d\rho dt \right)^{1/2} < \infty.$$

Безусловно, что функция $f \in A(U)$ имеет производные $f^{(m)}(z)$ каждых порядков $m \in \mathbb{N}$, которые используются равенством

$$f^{(m)}(z) = \sum_{k=m}^{\infty} \alpha_{k,m} c_k(f) z^{k-m},$$

где

$$\alpha_{k m} := k(k-1)(k-2) \cdots (k-m+1), k \ge m, k, m \in \mathbb{N}.$$

Вслед
$$B_2^{(m)}$$
: = $\{f \in B_2; \parallel f^{(m)} \parallel_2 < \infty\}, m \in \mathbb{N}$.

Скажем, что P_n — огромное количество всеохватывающих алгебраических полиномов ступени менее n:

$$P_n := \{ p_n(z) : p_n(z) = \sum_{k=0}^n a_k z^k, a_k \in \mathbb{C} \}.$$

Равенством

$$E_{n-1}(f)_2 := E(f, P_{n-1})_2 = \inf\{\| \ f - p_{n-1} \ \|_2 : p_{n-1}(z) \in P_{n-1}\},$$

подсчитаем величину наилучшего полиномиального приближения функций $f \in B_2$ элементами из множества P_{n-1} в метрике пространства B_2 . Известно, что [3, c. 209]

$$E_{n-1}(f)_2 = \| f - S_{n-1}(f) \|_2 = \left\{ \sum_{k=n}^{\infty} \frac{|c_k(f)|^2}{k+1} \right\}^{1/2},$$

где

$$S_{n-1}(f,z)=\sum_{k=0}^{n-1}c_k(f)z^k$$
 — частичная сумма разложения n -го порядка функций $f\in A(U)$ в ряд Тейлора

$$f(z) = \sum_{k=0}^{\infty} c_k(f) z^k$$
.

Естественно, что для функций $f \in B_2^{(m)}$ все ее поочередные производные $f^{(\nu)}(z)$ $(1 \le \nu \le m-1)$ еще относятся пространству B_2 и для них обладает место следующее разложение

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 2, 2022

$$f^{(\nu)}(z) = \sum_{k=\nu}^{\infty} \alpha_{k,\nu} c_k(f) z^{k-\nu}.$$

Конкретным вычислением возможно просто установить, что

$$\begin{split} E_{n-\nu-1}(f^{(\nu)})_2 &= \inf \Big\{ \| \ f^{(\nu)} - p_{n-1}^{(\nu)} \ \|_2 \colon p_{n-1} \in P_{n-1} \Big\} = \\ &= \| \ f^{(\nu)} - S_{n-1}(f^{(\nu)}) \ \|_2 = \Big\{ \sum_{k=n}^{\infty} \ \alpha_{k,\nu}^2 \cdot \frac{|c_k(f)|^2}{k-\nu+1} \Big\}^{1/2}. \end{split}$$

В работе [4-6] удалось установить, что для каждой функции $f \in B_2^{(m)}$ правосудно точное неравенство

$$E_{n-1}(f)_2 \le \left(\frac{n-m+1}{n+1}\right)^{1/2} \cdot \frac{1}{\alpha_{n,m}} \cdot E_{n-m-1}(f^{(m)})_2,\tag{2}$$

где $n \geq m, m, n \in \mathbb{N}$ и равенство в (2) имеет место для функции $f_0(z) = z^n \in B_2^{(m)}(U)$.

Теорема 1. Скажем, что $m, n \in \mathbb{N}, v \in \mathbb{Z}_+, m \geq 2$. Дальше при условии $n > m \geq v$ для каждой функции $f \in B_2^{(m)}$, то справедливо следующее точное неравенство

$$E_{n-\nu-1}(f^{(\nu)})_2 \leq \left(\frac{n-m+1}{n-\nu+1}\right)^{1/2} \cdot \frac{\alpha_{n,\nu}}{\alpha_{n,m}} \cdot E_{n-m-1}(f^{(m)})_2,$$

которая обращается в равенства для функции $f_0(z) = z^n \in B_2^{(m)}$.

Из этой теоремы вытекает следующее

Следствие. В условиях теоремы 1, выполняется равенство

$$\sup_{f \in B_2^{(m)}} \frac{E_{n-\nu-1}^2(f^{(\nu)})_2}{E_{n-m-1}^2(f^{(m)})_2} = \frac{\alpha_{n,\nu}^2}{\alpha_{n,m}^2} \cdot \frac{n-m+1}{n-\nu+1}.$$

При фиксированном $v \in [1, m]$ включим определение

$$A_m(k) := \left(\frac{k-m+1}{k+1}\right)^{\nu/m} \cdot \frac{k+1}{k-\nu+1} \cdot \frac{\alpha_{k,\nu}^2}{(\alpha_{k,m}^2)^{\nu/m}}.$$

Лемма. При всяких $n, m, v \in \mathbb{N}$, удовлетворяющих ограничению $n > m \ge v$, беспристрастно равенство

$$\max_{k \ge n} A_m(k) = A_m(n) := (\frac{n-m+1}{n+1})^{\nu/m} \cdot \frac{n+1}{n-\nu+1} \cdot \frac{\alpha_{n,\nu}^2}{(\alpha_{n,m}^2)^{\nu/m}}.$$

Приводим безо доказательств последующие теоремы.

Теорема 2.Скажем, что числа $n, m, v \in \mathbb{N}, m \ge 2$ удовлетворяют ограничениям $n > m \ge v$. В то время для каждого $1 \le v \le m-1$ имеет место точное неравенство

$$\begin{split} E_{n-\nu-1}(f^{(\nu)})_2 &\leq (\frac{n-m+1}{n+1})^{\nu/(2m)} \cdot \left(\frac{n+1}{n-\nu+1}\right)^{1/2} \cdot \frac{\alpha_{n,\nu}}{(\alpha_{n,m})^{\nu/m}} \times \\ &\times (E_{n-m+1}(f^{(m)})_2)^{\nu/m} \cdot (E_{n-1}(f)_2)^{1-\nu/m}. \end{split}$$

Вводим в обозрение класс $W_2^{(m)} := W_2^{(m)}(U)$, $(m \in \mathbb{N})$ — функций $f \in B_2^{(m)}$, для коих $\|f^{(m)}\|_2 \le 1$. Затем, при вычислении верхней грани по всем функциям $f \in W_2^{(m)}$ в соотношениях совместного характера, обусловимся, что $f \not\in P_m$, $f^{(m)} \ne const$.

Теорема 3. Скажем, что $n, m, v \in \mathbb{N}, m \geq 2, 1 \leq v \leq m-1$. То беспристрастно равенство

$$\sup_{f \in W_2^{(m)}} \frac{E_{n-\nu-1}(f^{(\nu)})_2}{E_{n-1}^{1-\nu/m}(f)_2} = \left\{ \left(\frac{n-m+1}{n+1}\right)^{\nu/m} \cdot \frac{n+1}{n-\nu+1} \right\}^{1/2} \cdot \frac{\alpha_{n,\nu}}{(\alpha_{n,m})^{\nu/m}}.$$

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 2, 2022

Теорема 4. При каждых $n, m, v \in \mathbb{N}, m \geq 2$, для коих выполняется ограниченность $n > m \geq v$, имеет место

$$\mathcal{E}_{n,\nu}(W_2^{(m)})_2 = \left(\frac{n-m+1}{n-\nu+1}\right)^{1/2} \cdot \frac{\alpha_{n,\nu}}{\alpha_{n,m}}.$$

В заключение отметим, что аналогичные задачи для функций действительного переменного рассмотрена в [7-16].

Литература:

- 1. Шабозов М.Ш., Тухлиев Д.К. О совместном приближении функций и их последовательных производных в пространстве Бергмана // ДАН Республики Таджикистан, 2018, т.61, № 5, с. 419-426.
- 2. Тухлиев Д.К. Об одновеременном полиномиальном приближении функций и их производных в пространстве Бергмана // Изв. АН РТ., Отд. физ.-мат., хим., геол. и техн. н. 2019, №2, с.14-18.
- 3. Тухлиев Д.К. Модуль непрерывности высших порядков и наилучшие приближения функций в пространстве Бергмана // Учёные записки ХГУ им. Б.Гафурова, Серия естественные и экономические науки. − 2021. − №1 (56). − С. 3-7.
- Тухлиев Д.К. Точные константы в обратных теоремах в пространстве Бергмана В₂ // Учёные записки ХГУ им. Б. Гафурова, Серия естественные и экономические науки. 2021. №4(59). С. 24-28.
- Тухлиев Д.К. Точные значения п-поперечников для некоторых классов функций в пространстве Бергмана // Учёные записки ХГУ
 им. Б. Гафурова, Серия естественные и экономические науки. 2021. №4 (59). С.29-34.
- 6. Тухлиев Д.К. О точных константах в теоремах о приближении функций в пространстве Бергмана // Учёные записки ХГУ им. Б. Гафурова, Серия естественные и экономические науки. − 2018. №3 (46). С.3-11.
- 7. Тухлиев Д.К.Некоторые точные значения n-поперечников для некоторых классов функций в пространстве Бергмана В2// В сборнике: Прикладные вопросы точных наук. Материалы Vмеждународной научно-практической конференции студентов, аспирантов и преподавателей. Армавир, 2021, с. 71-74.
- 8. Тухлиев Д.К. Точное неравенство Джексона-Стечкина в пространстве Бергмана В₂ // В сборнике: Интеллектуально-информационные технологии и интеллектуальный бизнес (ИНФОС-2020). Материалы одинадцатой заочной международной ноучнотехнической конференции. Вологда, 2020, с. 123-127.
- 9. Тухлиев Д.К. Оценка сходимости рядов экспериментальных данных с помощью алгебраических полиномов Джексона-Стечкина в пространстве Бергмана В₂ // В сборнике:Автоматизация и энергосбережение машиностроительного и металлургического производства: технология и надежность машин, приборов и оборудования. Материалы XIVмеждународной научно-технической конференции. Вологда, 2020, с. 301-305.
- 10. Тухлиев К., Туйчиев А.М.Среднеквадратическое приближение функций на всей оси с весом Чебышева-Эрмита алгебраическими полиномами. Труды Института математики и механики УрО РАН. -2020. -Т.26. -№2. -С. 270-277.
- 11. Тухлиев К. Наилучшие приближения и поперечники некоторых классов сверток в L₂. Труды Института математики и механики УрО РАН. -2016. -T.22. -№4. -C. 284-294.
- 12. Тухлиев К., Маликов А.М. О приближении функций в среднем на всей оси алгебраическими полиномами с весом Чебышева-Эрмита. ДАН РТ.-2016. -Т. 59. -№7-8. С. 284-291.
- 13. Тухлиев К., Муродов К.Н. О верхних гранях отклонения некоторых классов функций от их частных сумм рядов Фурье-Бесселя в пространстве L_{2,v}. Ученые записки ХГУ им. Б. Гафурова, Серия естественные и экономические науки. 2017. №1(40). С.47-57
- 14. Тухлиев К., Бекназаров Дж.Х. О наилучшем приближении функций суммами Фурье-Чебышёва в $L_{2,\mu}$ [-1,1]. ДАН РТ. -2014. -Т.57. -№3. -С. 177-183.
- 15. Толубаев Ж.О. «Об одном классе линейных интегро-дифференциальныхуравнений первогопорядка Вольтерра-Стилтьеса на полуоси», «Наука и новые технологии» № 4, 2013. Бишкек: 2013. С. 69-74. http://www.science-journal.kg/en/journal/1/2013/4/
- 16. Толубаев Ж.О., Сабиров Я.А., Холбеков Н.О. «Построение оператора регуляризации длярешения нелинейного интегрального уравненияпервого рода истокопредставимымисходным данным», ISSN 1694-7681 «Известия вузов Кыргызстана» № 11, 2019 Бишкек: 2019. С 3-9. http://www.science-journal.kg/ru/journal/2/2019/11/