Жаснакунов Ж.К., Токтогулова А.Т., Сатывалдиев А.С.

КҮМҮШ МЕНЕН КАЛАЙДЫ БИРГЕ ЭЛЕКТР УЧКУНДУК ДИСПЕРСТӨӨ ПРОДУКТУСУНУН ФАЗАЛЫК КУРАМЫ

Жаснакунов Ж.К., Токтогулова А.Т., Сатывалдиев А.С.

ФАЗОВЫЙ СОСТАВ ПРОДУКТА СОВМЕСТНОГО ЭЛЕКТРОИСКРОВОГО ДИСПЕРГИРОВАНИЯ СЕРЕБРА И ОЛОВА

Zh.K. Zhasnakunov, A.T. Toktogulova, A.S. Satyvaldiev

THE PHASE COMPOSITION OF THE PRODUCT OF JOINT ELECTRO-SPARK DISPERSION OF SILVER AND TIN

УДК: 543.51: 546.3-19

Күмүш менен калайды бирге гександа электр учкундук дисперстөөдө Ag₃Sn катуу эритмесинин жана β-Sn металлдык калайдын нанобөлүкчөлөрү калыптанат. Дифракциялык сызыктардын кеңейүүсү боюнча когеренттик чачыроо аймактарынын өлчөмдөрүн аныктоо көрсөткөндөй β-Sn кристаллчаларынын өлчөмү 28 нм ден 92 нм чейин, ал эми Ag₃Sn кошулмасы үчүн 37 нм ден 96 нм чейин болот.

Негизги сөздөр: электр учкундук дисперстөө, күмүш, калай, гексан, фазалык курам.

При совместном электроискровом диспергировании серебра и олова в среде гексан, формируются достаточно стабильные наночастицы твердого раствора Ag₃Sn и металлического олова β-Sn. Оценка размеров областей когерентного рассеяния по уширению дифракционных профилей показывает, что размеры кристаллитов β-Sn составляет от 28 нм до 92 нм, а для соединения Ag₃Sn от 37нм до 96 нм.

Ключевые слова: электроискровое диспергирование, серебро, олово, гексан, фазовый состав.

With the joint electrical spark dispersion of silver and tin in a hexane, it is formed sufficiently stable nanoparticles of Ag₃Sn solid solution and metal tin β -Sn. The estimation of the sizes of the coherent scattering regions by the broadening of the diffraction profiles shows that the sizes of the β -Sn crystallites are from 28 nm to 92 nm, and for the Ag₃Sn compound from 37 nm to 96 nm.

Key words: electrical spark dispersion, silver, tin, hexane, phase composition.

Одной из задач современной химии является создание новых многофункциональных материалов, обладающих такими свойствами, как электропроводность, способность противостоять агрессивным внешним воздействиям, каталитическая активность. К числу подобного рода материалов можно отнести бинарную металлическую систему Ag-Sn [1].

Наиболее простым и дешевым способом получения бинарных металлических систем является метод электроискрового диспергирования, который сочетает комплексное температурно-деформационное воздействие в процессе формирования нанообъектов с высокой технологичностью. Известно, что в процессе электроискровой обработки продукты эрозии образуются при высоких температурах, давлениях и скоростях охлаждения, что создает предпосылки для формирования энергонасыщенных высокодисперсных наночастиц с широким спектром структурных состояний и свойств [2].

Поэтому целью настоящей работы является получение и изучение фазового состава нанопорошков бинарных металлических систем серебра и олова в условиях электроискрового диспергирования.

Для получения нанопорошков бинарных металлических систем Ag-Sn при совместном диспергировании соответствующих металлов использована лабораторная установка, где искровой разряд создается с помощью RC-генератора. Искровой разряд получен при емкости конденсатора 2 мкф. Один из электродов представляет собой стержень из серебра, а вторым электродом является стержень из олова.

Продукты, полученные в условиях искрового разряда находятся в составе твердой фазы, поэтому твердая фаза отделялась от жидкой декантацией. Выделенный продукт промывается спиртом и затем высушивается в сушильном шкафу при 70-80⁰C.

Фазовый состав полученного продукта изучен методом рентгенофазового анализа. Дифрактограммы снимались на дифрактометре RINT-2500 HV (университет Кумамото, Япония) на медном отфильтрованном излучении. Оценка размеров областей когерентного рассеяния (ОКР) серебра и олова проведена по уширению дифракционных профилей по формуле Шеррера-Селякова [3].

Дифрактограмма продукта совместного электроискрового диспергирования серебра и олова в гексане, показано на рисунке 1, а результаты расчета в таблице 1.

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ № 9, 2017

Рис. 1. Дифрактограмма продукта совместного электроискрового диспергирования серебра и олова в гексане.

Результаты расчета дифрактограмм продуктов совместного электроискрового диспергирования серебра и олова в среде гексана показывают, что, продукт состоит из наночастиц β-Sn и Ag₃Sn (табл. 1.).

В системе Ag-Sn существуют твердые растворы на основе компонентов Ag и Sn в виде соединений ζ -(Ag₅Sn) и ε - (Ag₃Sn). Фаза ε - Ag₃Sn образуется по перитектической реакции Ж+ $\zeta = \varepsilon$ при температуре 480°С и содержании -25% Sn (ат.), область гомогенности соответствует 23,7-25% (ат.) Sn. Эвтектика ε -Ag₃Sn+Sn образуется при температуре 221°С и содержит 96,2% (ат.) Sn [4].

По литературным данным [5] во всех сплавах Ag-Sn присутствует диоксид олова и металлическое серебро. Поскольку в присутствии кислорода образуется высокопористая структура в расплаве Ag-Sn за счет поглощение кислорода серебром. Поэтому с увеличением концентрации в сплаве серебра повышается количество вносимого кислорода. Это приводит к тому, что при определенном содержании серебра в сплаве количество поступаемого с ним кислород становится столь велико, что происходит катастрофическое окисление сплава.

Таблица 1 - Результаты расчета дифрактограммы продукта совместного электроискрового диспергирования серебра и олова в гексане и размеры (d) ОКР частиц.

№	Экспериментальные данные			Фазовый состав		окр
				β-Sn	Ag ₃ Sn	
	20	d, Aº	Ι	hkl	hkl	НМ
1.	30,66	2,9159	100	200		53
2.	32	2,7969	97	101		54
3.	34,58	2,5938	17		110	46
4.	37,58	2,3933	24		002	52
5.	39,58	2,2769	62		111	37
6.	43,86	2,0641	51	220		53
7.	44,88	2,0195	62	211		43

8.	52,12	1,75477	13		112	81
9.	55,26	1,66226	20	301		28
10.	62,48	1,4864	23	112		64
11.	63,76	1,4596	15	231		87
12.	69,08	1,3596	11		113	77
13.	72,38	1,30556	14		220	68
14.	73,14	1,29386	15	420		92
15.	74,92	1,26958	12		202	62
16.	76,08	1,25102	11		221	70
17.	79,46	1,20608	13		004	96
18.	89,34	1,0965	8	431		78

Такое явление реализуется в том случае, когда система превращается в пористый слой, не обладающий защитными свойствами.

Мы предполагаем, что отсутствие окисленных форм металлических частиц связано с тем, что при термическом пиролизе молекул гексана в условиях искрового разряда образуются сажа, которая способствует формированию защитного слоя на поверхности твердого раствора Ag_3Sn , не допуская окислению наночастиц серебра и олова. Вместе с тем защитное покрытие из сажи, образующееся вокруг частиц создает определенные ограничения для агломерации наночастиц, позволяя получить стабильных наночастиц Ag_3Sn и β -Sn.

В таблице 2 приведено содержание металлов в составе продуктов совместного электроискрового диспергирования серебра и олова. Это содержание определено на основе расхода электродов при диспергировании. Расход электродов устанавливался взвешиванием электродов до и после процесса.

Таблица 2 - Содержание металлов в составе продуктов совместного электроискрового диспергирования серебра и олова в гексане

Металлы	Содержание металлов				
	ВГ	в масс.%	в атом. %		
Серебро	0,353	47	21,35		
Олово	1,46	53	78,65		

Из таблицы 2 видно, что в составе продуктов содержание серебра по массе составляет 47% (в масс), а содержание олова составляет 53% (в масс). Это указывает на то, что при совместном электроискровом диспергировании серебра и олова диспергируемость олова значительно выше, чем серебра. Поэтому в составе продукта кроме Ag₃Sn формируется β-Sn.

В работе [6] показано, что ликвидус кристаллизации соединения Ag₃Sn соответствует концентрации серебра менее 50,4 ат.% а для соединения Ag₅Sn он лежит в области концентраций серебра 50,4-80,5 ат.%. т.е. в том интервале, в котором наблюдается способность системы к окислению.

При совместном диспергировании серебра и олова в среде гексана атомное соотношение серебра и олова составляет Ag (21,35%): Sn (78,65%) т.е. количество атомов олова больше чем атомы серебра (табл. 2.). Поэтому на дифрактограмме образца не обнаружено дифракционные линии характерные для монометаллического серебра.

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ № 9, 2017

Известно, что при формировании наночастиц бинарных металлических систем основой структурной перестройкой является образование биметаллов, в центрах которых преимущественно располагаются атомы Ag. Образование таких наночастиц является результатом распределения атомов разного сорта при обязательном наличии атома меньшего размера в их центрах [8].

По уширению дифракционных профилей размеры кристаллитов β -Sn составляет от 28 до 92 нм, а для соединения Ag₃Sn от 37 до 96 нм.

Такое широкое распределение размеров наночастиц связаны с тем, что при электроискровом диспергировании формируется частицы с размером порядка 10-20 нм, в то время как более крупные из частиц, представляют собой сростки наночастиц. Эти частицы образуют объемные скопление, состоящие из более мелких фракций.

Таким образом, было установлено, что при совместном электроискровом диспергировании серебра и олова в гексане, формируется достаточно стабильные наночастицы твердого раствора Ag_3Sn и металлического олова β - Sn.

Литература:

- Мастеров В.А. Серебро, сплавы и биметаллы на его основе / В.А. Мастеров, Ю.В. Саксонов. М.: Металлургия, 1979. 296 с.
- Сатывалдиев А.С., Асанов У.А. Электроэрозионный синтез соединений переходных металлов. - Бишкек: КГНУ, 1995. - 187 с.
- Авчинникова Е.А., Воробьева С.А. Синтез и свойства наночастиц меди, стабилизированных полиэтиленгликолем // Вестник БГУ. - Сер. 2. 2013. - №3. - С. 12-16.
- Диаграммы состояния двойных металлических систем Справочник: в 3 т.: Т. 1 / Под. общ. ред. Н.П. Лякишева.
 М.: Машиностроение, 1996. - 992 с.: ил.
- 5. Денисова Л.Т., Биронт В.С., Денисов В.М., Зеер Г.М., Осипович Т.В., Кирик С.Д. О катастрофическом окислении расплавов Ag-Sn // Journal of Siberian Federal University, Engineering & Technologies 2009, Vol. 3, №2. - Р. 283-293.
- Арсентьев П.П., Коледов Л.А. Металлические расплавы и их свойства. - М.: Металлургия, 1976. - 376 с.
- Xia L., Hu X., Kang X , Zhao H., Sun M., Cihen X. A onestep facile synthesis of Ag-Ni core-shell nanoparticles in water-in-oil microemulsions. // J.Colloids and Surfaces A: Physicochemical and Engineering aspects 2010. V. 367. - P. 96-101.
- Peng Y.-H., Yang C.-H., Chen K.-T., Popuri S. R., Lee C.-H., and Tang B.-S. Study on synthesis of ultrafine Cu-Ag coreshell powders with high electrical Conductivity // Applied Surface Science 2012. vol. 263, №15. - P. 38–44.

Рецензент: к.хим.н., профессор Сагындыков Ж.