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H cunvbepm meiikunoucunoe o3yno-o3y myiiynoow oy Oeneunyy A onepamopy menen cul3bIkmyy smec ouggepenyuanovix
meHnOemenepOUH KeHuKmupyy yuyH 6auimanksl MaceleHu Kapan Kepeny.

2

% + Au(t) = f(u(t),u(t - w)) , >0,

u(®)=¢(), —w<t<0.

byn macenenun yexmenzen ubleapbliblUblHbIH HCANSHIZ0bICHL AHCAHA AHCAUAULLL HCOHYHOO MeopeMa YOaKmulLyy KeYukmupyy MeHeH
CHI3BIKMYY dMeC 2UnepOoIUKanbik meyoemenep yuyn mypeysynean. Yoaxmulnyy Keuukmupyy meHern mopm mypoyy Cbl3blKmyy Mec
Jicexeue myynoyoazel menoemenep YuyH He2uzeu meopemManbit KOIOOHYIYULY KOPCOMYAOH.

Hezu3zeu co300p. uekmenzen 4bleapuliblil, CoI3bIKIMYY dMec cUnepOOIUKAIbIK meyoeme, Ybleapbliblmblt JHCANCbI30bI2bl HCAHA
Jrcauianib.

Paccmompum nauansmyro 3aoauy

2

%mw) = [ (u(@)u(t—w)), 1>0,

u@®)=e), -w<t<0
07151 3A0EPHCKU HENUHETIHO20 OUDDEPEHYUATLHOL0 YPABHEHUS 8 2UNbOEPmMOo8oM npocmpancmee H ¢ camoConpasiceHHbiM noaoiCU-
menvbHo onpedenennvim onepamopom A. Teopema o cywjecmeosanuu u eOUHCMEEHHOCMU OSPAHUYEHHO20 PEUleHUsi 3Moll 3a0a4u
YCMaHoseHa O HeIUHEUHO20 2UNepOOIUYecKO20 YPABHEHUs ¢ 8peMeHHOt 3adepickoll. ITokasano npumerenue 0CHOBHOU meopembl
ONiA Yemvlpex pasiuyHblX HeIUHEUHbIX YPAGHEHUL ¢ YACMHBLIMU NPOU3B0OHBIMU C BDEMEHHOL 3A0EPHCKOI.
Knroueswvie cnosa: ozpanuuennvie pewienus, Heiunelinoe 2unepboiuyeckoe ypasHerue, eOUHCMEEHHOCMb U CYWeCmBo8anue
peuienusl.

We consider the initial value problem

f{—;‘ + Au(t) = f(u(t),u(t - w)), t>0,

u@®)=¢@), -w<t<0

for a delay nonlinear differential equation in a Hilbert space H with the self adjoint positive definite operator A. Theorem on the
existence and uniqueness of a bounded solution of this problem is established for a nonlinear hyperbolic equation with time delay. The
application of the main theorem for four different nonlinear partial differential equations with time delay is shown.

Key words: a bounded solution, a nonlinear hyperbolic equationo existence and uniqueness of a bounded solution.

1. Introduction

Delay differential equations are used to model biological, physical, and sociological processes, as well as naturally
occurring oscillatory systems (see, for examples, [1]-[4]). It is known that, in delay differential equations, the presence of
the delay term causes the difficulties in analysis of differential equations. Lu [5], studies monotone iterative schemes for
finite-difference solutions of reaction-diffusion systems with time delays and gives modified iterative schemes by
combing the method of upper-lower solutions and the Jacobi method or the Gauss-Seidel method. Ashyralyev and
Sobolevskii [6], consider the initial-value problem for linear delay partial differential equations of the parabolic type and
give a sufficient condition for the stability of the solution of this initial-value problem. They obtain the stability estimates
in HOlder norms for the solutions of the problem.

42



,——[ HAYKA, HOBBIE TEXHOJIOI'MM 1 MTHHOBALUH KBIPI'BI3CTAHA Ne7, 2017 ]

Ashyralyev and Agirseven [7]-[13], investigated several types of initial and boundary value problems for linear
delay parabolic equations. They give theorems on stability and convergence.

Moreover, Ashyralyev, Agirseven and Ceylan [14], interested in finding sufficient conditions for the existence of a
unique bounded solution of the initial value problem for

%+ Au(t) = f(u(®),u(t—w)), t>0,

u®)=¢(), -w<t<0

M

the differential equation in a Banach space E with the positive operator 4 with dense domain D(4). The main theorem on
the existence and uniqueness of a bounded solution of problem (1) was established for a nonlinear evolutionary equation
with time delay. The application of the main theorem for four different nonlinear partial differential equations with time
delay was shown. Numerical results were shown.

It is known that various initial-boundary value problems for evolutionary nonlinear delay partial differential
equations can be reduced to the initial value problem for the differential equation

d’u
dr’

+ Au(t) = f (u(t),u(t —w)), t >0, )

u(t)y=¢(t), -w<t<0

in a Hilbert space H with the self adjoint positive definite operator 4 with dense domain D(A4). Let {C(t), = 0} be a

strongly continuous cosine operator-function defined by the formula

itd"? —itd"?

Then, from the definition of the sine operator-function s (7)

c(t)=

s(t)= jc(s)uds

0

it follows that
eitA'/2 . —itd"?
s(t)y=A"
© 2i
The following estimates hold:
e@), .., <u|4”s@), , <1t>0. 3)

A function u(?) is called a solution of problem (2) if the following conditions are satisfied:

1. wu(?) is twice continuously differentiable on the interval [—®,). The derivative at the endpoint ¢ =—® i

understood as the appropriate unilateral derivative.
2. The element u(f) belongs to D(A4) for all ¢ €[—w,), and the function 4u(¢) is continuous on the interval

[—a),OO) B

3. u(?) satisfies the equation and the initial condition (2).

In this paper, we are interested in finding sufficient conditions for the existence of a unique bounded solution of
problem (2). The main theorem on the existence and uniqueness of a bounded solution of problem (2) is established for a
nonlinear evolutionary equation with time delay. The application of the main theorem for four different nonlinear partial
differential equations with time delay is shown. In general, it is not able to get exact solution of nonlinear problems.
Therefore, the first and second order of accuracy difference schemes for the solution of one dimensional nonlinear
hyperbolic equation with time delay are presented. Numerical results are shown. Note that bounded solutions of nonlinear
one dimensional parabolic and hyperbolic partial differential equations with time delay have been investigated in earlier
papers [15]-[19]. The generality of the approach considered in this paper, however, allows for treating a wider class of
multidimensional delay nonlinear differential equations.

2. Main Existence and Uniqueness Theorem
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The method of proof is based on reducing problem (2) to an integral equation

u(t) = c(t — (n—Tywyu((n — )yw) + s(t — (n — 1)W)w N

t

+ [ sty f@@)u(y-w)dy,

(n-)w

(mn-Dw<t<nw,n=0123,..,u(t)=p(),-w<t<0

in [0,0)x H x H and the use of successive approximations. The recursive formula for the solution of problem (2)
is

(1) = e(t = (n = Dywut, ((n = D)yw) + s(t — (n — DW)W N
* I st =) f (i (v),u(y —w))dy,

(n-Hw

uy () = c(t = (n=Dw)u,(n=DHw) + s(1 = (n - 1)W)M’

dt
(n-Dw<t<nw, n=1,2,...,
i=1,2,..,u,(t)=¢(t), -w<t<0. @)
Theorem 2.1. Assume the following hypotheses:
Forany ¢t,—w<t<0, ¢(t) € D(A) and
lpte)], <M, A‘VZ(D'(I)HH <M. )

The function f : H x H — H be continuous and bounded function, that is

HA‘VZ f(u,u)HH <M (6)
in A xHand Lipschitz condition holds uniformly with respect to z

|4 (f@.2-rw.2), <L, (7)

Here, L, M ,M ,M are positive constants. Then there exists a unique solution to problem (2) which is bounded in
[0,00)x HxH .

Proof. We consider the interval 0 <z <w. Problem (2) becomes

Z,Zl + Au(t) = f(u(®),p(t —w)), u(0) = p(0), u'(0) = '(0)

and it can be written in equivalent integral form

u(t) = c()p(0)+s(1)¢'(0) + jS(t =N W(y),p(y—w)dy. (®)
0

According to the method of recursive approximation (4), we get

u, (1) = c()p(0) + s(1)¢'(0) + jS(t =N W, (¥),p(y—w)dy,i=12,.... 9
0

Therefore,
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w() =g () + Y (0= 1,0)), (10)

where

uy () = c(t)p(0) + s(1)¢'(0).
Applying estimates (3) and (5), we get

Jo O, <[l loxO), + 450

Applying formula (9) and estimates (3) and (6), we get

|4 ’(O)H <M+M.

H—->H

Jut, (0 =, )], < jHA”sa =047 £ Gy, = W), dy < M.

Using the triangle inequality, we get
|, @), <M + M + Mt.

Applying formula (9) and estimates (7),(3) and (6), we get

s @) =, )], < jHAl/Zs@ =47 [ @ ()= W) = £ g () oy = w))], v <

| vl i (LY
SL.([”ul(t)_MO(t)”H dySLM-([ydy:T%
Then
- ML MLy
||M2(Z)||HSM+M+ T +T -

Let

0, <L

Then, we obtain

() =1, ()], < jquS(t - |47 [ @, ()0 = ) = f () p(y = w)]|, v <

! M Ly)n M L n+l
—t,., ()] dy < QLT(_@:T( /)

) n! (n+1)!

Therefore, for any n,n > 1, we have that

M (Lt)nJrl

||un+1(t) u (t)” L ( +1)'

and

n+l

M Lt M (Lt)
b
L1 L (n+1)!

(), <M+M+—

by mathematical induction. From that and formula (10) it follows that
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. L i+l
ol <0l + 3@, <20-+01+ S o

il

~ M
£M+M+Te“, 0<t<w
which proves the existence of a bounded solution of Problem (2) in [0,w]x H x H . Now, we consider solution of
Problem (2) in w<¢ <2w. We note that 0 <¢—w < w. We denote that
@ t)=u(t—w),w<t<2w.

Replacing ¢ and #-w and assuming that

|4 fa, v —w)|, <M,

and

lo,©], <M, |40, (z)HH <M,
Therefore,

) =l = W) () + 50— ) T,
(0 =ct= w0+ 5(t =) 220D ¢

t
[ 5t =) @ ) (y = w)dy,i =1,2,...,
In a similar manner, for any n, n>1, we obtain that

M, (L(t- w)""
L (n+l)

un+l (t) - un (Z)”H S

and

Y 1/ n+l
||un+l(t)||E SM] +M1 +%E+”‘+M1 (L(t_W)) .
L L (n+)!

From that it follows that

(o), <M, + 01, 42w <2

which proves the existence of a bounded solution of Problem (2) in [w, 2W] xHxH .

In a similar manner, we can obtain that

||u(t)|| <M, +M, +Ai L) g <t < (n+1)w,

where Mn,Mn and M , are bounded. This proves the existence of a bounded solution of Problem (2) in

[nw, (n+1)w] X H x H . In general, the function u(¢) constructed is a solution of Problem (2) which is bounded in
[0,0)x HxH .

Now we will prove uniqueness of this solution of Problem (2). Assume that there is a bounded solution v(¢)
of Problem (2) and v(¢) # u(t) . We denote that z(¢) = () —u(t) . Therefore for z(¢), we have that
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di;gt) + Az(t) = f(u(t),0(t —w)) — f(u(t),u(t—w)), t>0

2(t)=0, —w<1<0.

We consider the interval 0 <¢ < w . Since V(£ —w) =v(f —w) = @(f — W), we have that

d;igt) + Az(t) = £ (V) p(t = w)) = £ (u(t), @(t = w)), 2 >0,
z(t)=0,—-w<t<0.
Therefore,

t

2(t) = [ st = )L (v, 0y =) = £ (u(¥), p(y = ) ds.

0

Applying estimates (3) and (6), we get

|z, s{

4" —y>HH[—A%f(v(y),¢(y— W) =S ()l - W))]HH @

< L[ M) -u(),, ds < L[|z, v

Using the integral inequality, we get
|z, <0

From that it follows that ”Z(t)” " <0 which proves the uniqueness of a bounded solution of Problem (2) in
[0,w]x H x H . Applying same way and mathematical induction, we can prove the uniqueness of a bounded solution
of Problem (2) in [0,0)x H x H .

Remark 2.1. Method of present paper also enables to prove, under certain assumptions, the existence of a unique
bounded solution of the initial value problem for evolutionary nonlinear partial differencial equations

2

C;Tﬁ‘ + Au(t) = £(u(t),u([t]).t > 0,
u(0) = (0),u'(0) = ¢'(0).

In a Hilbert space H with the self adjoint positive operator A with dense domain D(A). Here [t] denotes the greatest-
integer function.

(In

3. Applications

First, we consider the initial-boundary value problem for one dimensional nonlinear delay differencial equations of
hyperbolic type

%—(a(x)ux (t, X)), +6u(t,x) = f(x,u(t,x),u(t —w,x)),
0<t<oo,xe(0,]) (12)

u(t,x)=@(t,x),p(t,0)=pt,0),p.(t,0) = (t,]),-w<t<0,x €[0,/],
u(t,0)=u(t,l),u (t,0)=u (¢,1),—-w<t <o

Where a(x),@(t,x) are given sufficiently smooth functions and ¢ >0 is the sufficiently large number. We will
assume thata(x)>a >0 anda(/) =a(0) .
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Theorem 3.1. Assume the following hypotheses

1. Forany t,—w<t<0
. ¢'(t,.)
2. The function f': (O, [ ) xL, [0, [ ] XL, [0, [ ] —>L, [0, [ ] be continuous and bounded, that is

”f(u’v)”z,z[o,/] < M (14)

]sM. (13)

<
L[0J] — M, L,[0,

and Lipschitz condition holds uniformly with respect to z
”f(u, )= f, Z)||L2[O,l] sL ”u -V
Here and in future, L, M, M R M are positive constants. Then there exists a unique solution to problem (12) which

is bounded in [0,00)x L, [0,1] xL, [O,l] :

(15)

L,[0,7]

The proof of Theorem 3.1 is based on the abstract Theorem 2.1, on the self-adjointness and positivity in L2 [O, [ ]

of a differential operator A" defined by the formula

A"uz—di( (x)%}t&t (16)

X X
With domain D(Ax) = {u eW;} [O,l] :u(0)=u(),u'(0)= u'(l)} [20] and on the estimate

1

(47)2 st}

<1,t>0 17)

”c{t}”la[O,l]»la[O,l] < 1’
L,[0,1]->L,[0.1]

Second, we consider the initial nonlocal boundary value problem for one dimensional non-

linear delay differential equations of hyperbolic type with involution

% —(a()c)u)C (t,x))x — ,B(a(—x)ux (t,—x))x +ou(t,x)
= f(x,u(t,x),u(t—w,x)), 0<t<ow,xe(-11), %)

u(t,x) = (D(l,X),(D(f,—l) = (D(tal) = 07
-w<t<0, xe [—l,l],
u(t,~)=u(t,l)=0, —-w<t <o,

Where a(x),@(t,x) are given sufficiently smooth functions and & > 0 is the sufficiently large number. We will
assume thata > a(x) = a(-x) =5 > 0,5 —a|f| =20 .
Theorem 3.2. Assume the following hypotheses:

1. Forany t,—w<t<0

<M.

¢ (t) ) |LZ[_Z’I]

||¢(l") |L2[—l,l] < M’
2. The function f': (—l,l) XL, [—l,l] xL, [—l,l] —> L, [—l,l] be continuous and bounded, that is
—”f(u’v)”LQ[—l,l] SM'

and Lipschitz condition holds uniformly with respect to z
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L[~ °

”f(u, 2)=f Z)”Lz[—l,l] <L ”u -V
Then there exists a unique solution to problem (18) which is bounded in [0, 0) x L, [—l , ] xL, [—l . ] .

The proof of Theorem 3.2 is based on the abstract Theorem 2.1, on the self-adjointness and positivity in L2 [—l , ]

of a differential operator A" defined by the formula
AWx) ==(a(x)v,(x)), = B(a(=x)v,(=x)), +V(x)

With domain D(Ax) = {u eWw} [—l,l] u(=H=u(l)= O} [21] and on the estimate

(Aﬁiqg <1,120

L[-1I>L,[-1,]]

et

<1
LI-LI> L[] =

Third, let Q < R" be a bounded open domain with smooth boundary S, Q=0QUS.In
[0,00)x €2 we consider the initial boundary value problem for multidimensional nonlinear delay
differential equations of hyperbolic type
% —rzn_]:(ar (X)u, )x’ + ou(t, x)
= f(x,u(t,x),u(t—w,x)), 0<t<oo,x=(x,....x,) €Q, (19)
u(t,x)=o(t,x),-w<t<0, xeQ,
u(t,x)=0,xeS5,0<¢t <o,

Where a, (x) and ¢(t,X) are given sufficiently smooth functionsand & >0 is the sufficiently large number. We

will assume that &, (X) >0 .
Theorem 3.3. Assume the following hypotheses:

1. Forany ¢t,—w<t<0

<M, <M.

P'(t,.)

e

le(z..)

2. The function f :QxL, [S_)] xL, [ﬁ] - L, [S_)] be continuous and bounded, that is

—||f(u’v)||L2[ﬁ] = M

e

and Lipschitz condition holds uniformly with respect to =
|2y = 72y < Ll =g -
Then there exists a unique solution to problem (19) which is bounded in [0,00) x L, [(_2] x L, [(_2] .

The proof of Theorem 3.3 is based on the abstract Theorem 2.1, on the self-adjointness and positivity in L, [S_)] of

a differential operator A" defined by the formula

A'u(x) = —i(ar (X, )xr + ou(x) (20)

r=I1
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With domain ([22]) D (A’“) = {u(x) tu(x),u, (x),(a,(X)u, ), €L, (ﬁ),l <r<mnu(x)=0,xe S} and

on the estimate

1
et @ <H|(47) st <1,620 @1)
L[Q]>14,[Q]

Fourth, in [0,00)x © we consider the initial boundary value problem for multidimensional nonlinear delay

differential equations of hyperbolic type

d’u(t,x) < .
%—;(ar(x)ux,)x +ou(t,x)
= f(x,u(t,x),u(t—w,x)), 0<t<oo,x=(x,...,x,) €, ’)
u(t,x) = p(t,x),-w<t<0, xeQ, 22

Q(f,x)=0, xeS,0<t <o,
on

Where 4, (X) and ¢ (¢, x) are given sufficiently smooth functions and 0 >0 is the sufficiently large number and

a, (x)>0 . Here, 7 is the normal vector to €.

Theorem 3.4. Suppose that assumptions of Theorem 3.3 hold. Then there exists a unique solution to problem (22)
which is bounded in [0,50) x L, [ Q |x L, [ Q.
The proof of Theorem 3.4 is based on the abstract Theorem 2.1, on the self-adjointness and positivity in L, [(_2] of

a differential operator 4" defined by the formula

n

A'u(x) = —Z(a, (X, )x* + ou(x)

r=1

With domain ([22])
. — ou
D(A ) =qu(x):u(x),u,(x),(a (x)u, ) €L, (Q),l <r< n,; =0,x €S} and on the estimate (21).
r r 7]

4. Numerical Results
In general, it is not possible to get exact solution of nonlinear problems. Therefore, the first and second order of
accuracy difference schemes for the solution of one dimensional nonlinear hyperbolic equation with time delay are

presented. Numerical results are provided. We consider the initial-boundary value problem
d*u(t,x) d*u(t,x
G0 UG f (e, x)uti—1,),
dt dt
f(x,u(t,x),u(t—1,x)) =2 " sinx

— O<t<o,0<x<r,
+sin(U(t,X)[U(t—I,X)Cosx—w&nxD, mEsreT
x

u(t,x)=e'sinx,0<x<z, —1<¢<0,
u(t,0)=u(t,7)=0,t>0

(23)
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for the nonlinear delay hyperbolic differential equation. The exact solution of this test example is
u(t,x)=e " sinx.

We get the following iterative difference scheme of first order of accuracy in t for the approximate solution of the
initial-boundary value problem (23)

k+1 k k-1 k+1 k+1 k+1
mun _2(un)+un nzun+1 _2(un )+un—l

- =2¢'sinx
T h? "

k-N k—-N
i’ ()

m "~ n+l m~ n-1

uycosx, —

+sin ut
(m—l n) (m n 2h

sinx,
5 24

t, =kt,x, =nh,1<k <o, 1<n<M -1,
ut =e*sinx,,x =nh,0<n<M,t, =kr,-N<k<O,N. =1,Mh=r,

k _ k _ _
muO - muM —0,0Sk<oo,m_1,2,___

m

for the nonlinear delay hyperbolic equation. Here and in future # denotes the iteration index and an initial guess

OuiC ,k>1,0<n<M is to be made. Applying the modified Gauss elimination method, equation (24) is solved. In
computations the initial guess Ou, is chosen and when the maximum error between two consecutive results of iterative
difference scheme (24) becomes less than 107", the iterative process is terminated.

Now, we get the following iterative difference scheme of second order of accuracy in # for the approximate solution
of the initial-boundary value problem (23)

k+1 k k-1 k+1 k+1 k+1 k-1 k-1 k-1
u,’ —Z(un)+un u, —2(u+)+un_+1 u —Z(un )+un

m " n+l m " n+l

- . - . =2¢'sinx,
T 2h 2h
k=N k-N
. 1 — — mun - mun* .
+sin —[(m_lu,'j“)+(m_luf 1)] uVycosx, — (i )smxn
2 2h : 25)

t, =kt,x, =nh1<k<ow,l<n<M -1,
u' =esinx,,x, =nh,0<n<M,t, =kr,-N <k<O,N,=1,Mh=r,

k k
uy, = uy, =0,0<k<oo,m=1,2,...

m

m

In Table 1 as we increase M and N values each time starting from M = N =30 by a factor of 2 the errors in

the first order of accuracy difference scheme decrease approximately by a factor of 1 bR the errors in the second order of

accuracy difference scheme decrease approximately by a factor of % . The errors presented in the table indicate the

stability of the difference schemes and the accuracy of the results. Thus, the second order of accuracy difference scheme
increases faster than the first order of accuracy difference scheme.
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