<u>ХИМИЯ ИЛИМДЕРИ</u> <u>ХИМИЧЕСКИЕ НАУКИ</u> <u>CHEMICAL SCIENCE</u>

Абдыбалиев Д.А., Абдыбалиев Т.Д.

СЕЙРЕК КЕЗДЕШҮҮЧҮ ЭЛЕМЕНТТЕРДИН НИТРАТТАР МЕНЕН БИУРЕТТИН КОШУЛМАЛАРЫНАН АЛЫНГАН КОМПЛЕКСТИК ТУЗДАРДЫН КРИСТАЛДЫК ТҮЗҮЛҮШ КУРАМЫН ОКУП ҮЙРӨНҮҮ

Абдыбалиев Д.А., Абдыбалиев Т.Д.

ИЗУЧЕНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ И СТРОЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ С БИУРЕТОМ

D.A. Abdybaliev, T.D. Abdybaliev

STUDY CRYSTAL STRUCTURE OF THE NITRATE OF ARE EARTH ELEMENTS BIURET

УДК: 548.3:546. 65:547.495(04).

Бул макалада Me (NO₃)₃ Б тибиндеги сейрек кездешүүчү элементтердин нитрат жана биурет менен кошулганда пайда болгон химиялык куймаларынын кристаллдык түзүлүш курамы каралган.

Алардын жөнөкөй уячаларынын чоңдуктары :a,b с α, β, γ , жана көлөмү V аныкталган.

Негизги сөздөр: кристаллдык параметрлер, нитраттар, биурет, кристаллдык түзүлүш курамы молекула, көлөм.

Изучены кристаллические структуры и строения соединений типа $Me(NO_3)$ 3 Б. где Me: La, Tb, Yb, Gtd, Eu, Ce, Nd, Ho, Dy, Er, Pr, Tm, Lu, Sm.

Установлена параметры элементарной ячейки кристаллической решетки: a, b, c, α, β, γ, V. Соединение кристаллизуются в моноклинной системе.

Ключевые слова: кристаллические параметры нитраты, биурет, кристаллические структуры объемы и молекула.

The study of the crystal structure and the structure of compounds Me:Ln, Vb, Tm, Tb, Gd/ Eu, Ct, La, Nd, Er, Sm, Ho, Dy and Pr Establish the parameters of the unit cell of the crystal lattia: $a,b,c,\alpha,\beta,\gamma$, α,β , γ , and the ϑ_0 lume V

Compounds type Me $(NO_3)_3 B$ lattia shape are in the monoclinic crystal system and defines number of atoms confained in the unit cell.

Key words: crystal structure, crystal parameters, compounds, cell, ϑ_0 lume, biuret, monoclinis.

Рентгенофазовые анализы были выполнены в рентгеновской лаборатории в ИХ и ХТ НАН КР [2]. Полученные результаты фазового анализа: J/J_o и d_α/n в Å является исходным материалом для дальнейшего продолжения исследованию. Целью настоящей работы является определения и установления параметров элементарной ячейки кристаллической решетки.

Для интерпретации порошковых рентгенограмм существуют ряд методов: расчет рентгенограмм в случае неизвестной ячейки и в случае известной ячейки, графические, аналитические, а так же методы переменного масштаба [3-5].

При определении параметров элементарной ячейки можно пользоваться уравнением как ромбической, так и моноклинной системы [6-7].

Проводе некоторые поисковые аналитические вычисления можно предполагать, что рассматриваемые, нами соединения кристаллизуются в моноклинной системе. Поэтому методы для интерпретации ромбических кристаллов успешно используется при расшифровки моноклинной системы кристаллической сингонии [8].

Квадратичная форма уравнение для моноклинной сингонии [4] имеет вид:

$$Sin^{2}\theta_{hkl} = \frac{\hat{\lambda}^{2}}{4} [\frac{h^{2}/a^{2}/+b^{2}/c^{2}-2hl\cos(b/a\cdot c)+k^{2}/b^{2}}{Sin^{2}\beta}], \dots$$
(1)

где h, k, l – Миллеровские индексы плоскостей; a, b, c – параметры элементарной ячейки; λ – длина волны рентгеновских лучей; β – угол между ребрами ячейки.

Уравнение (1) можно представить в другой форме:

$$Sin^{2}\theta_{hkl} = h^{2}Sin^{2}\theta_{100} + l^{2}Sin^{2}\theta_{001} - 2hlSin\theta_{100} \cdot Sin\theta_{001} \cdot \cos\beta + k^{2}Sin^{2}\theta_{010}, \dots (2).$$

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА №6, 2017

Решение уравнение (1) сложно и очень трудоемка. Вычисления сокращаются, если использовать более простые соотношения, которые получаются, если для выражения $Sin^2\theta$ исходить из параметров обратной решетки элементарной ячейки, а именно

$$a^*=1/a_1$$
 $b^*=1/b$ и $c^*=/c$... (3)

и тогда для моноклинной системы уравнение (1) имеет вид:

$$Sin^{2}\theta_{hkl} = \frac{\lambda^{2}}{4} (h^{2}a^{*2} + k^{2}b^{*2} + l^{2}c^{*2} - 2hlc^{*}a^{*}\cos\beta^{*})...$$
(4)

Уравнение (4) можно решить используя методы Ито и Когена, Липсона [6, 7, 9], где были разработаны способы индицирования любых порошковых рентгенограмм не зависимо от симметрии кристаллов и является полезным, особенно для кристаллов триклинной системы.

В вычислениях Ито -это выявление зон h k 0, 0 k ℓ , h 0 ℓ и 0 0 ℓ . Тогда из уравнение (4), получим следующие выражение:

$$\operatorname{Sin}^{2}\theta_{hoo} = \frac{\lambda^{2}}{4}h^{2}a^{*2} = \operatorname{Sin}^{2}\theta_{100}\dots$$
 (5)

$$Sin^2 \theta_{oko} = \frac{\lambda^2}{4} k^2 b^{*2} = Sin^2 010.....$$
 (6)

$$Sin^2\theta_{o\,o1} = \frac{\lambda^2}{4}l^2c^{*2} = Sin^2001.....$$
 (7)

Таким образом, имеем для моноклинной системы:

$$Sin^{2}\theta_{hkl} = Sin^{2}\theta_{100} + Sin^{2}\theta_{010} + Sin^{2}\theta_{001} +$$

2hlSin₁₀₀, Sin Θ_{001} , cos β (8)

Известно, что уравнение (8) с некоторым допущением совпадает с уравнением (1,2) [5-7]. Тогда параметры: b, с можно найти из экспериментальных значений $Sin^2\theta$.

Для интерпретация порошковых рентгенограмм учитывается, что $Sin^2\theta_{hoo}$ есть [100], $Sin^2\theta_{oko}$ есть [010] есть $Sin^2\theta_{ool}$ [001].

Если считать известными h, k и ℓ , то по уравнению (5), (6) и (7) можно определить параметры элементарной ячейки : a, b, c.

Угол β определяется с комбинированием [h_1, k_1, l_1] и [h_2, k_2, l_2] индексов плоскостей [8,9] или по формуле (4) или (2).

Таким образом, все вычисление значения параметров элементарной ячейки занесены на таблице 1 и 2, а формы и типы пространственного изображения элементарной ячейки моноклинной сингонии показано на рис 1 и 2.

Рис 1. Формы пространственного изображения элементарной ячейки нитратов РЗЭ с биуретом кристаллической решетки моноклинной системы:

Рис 2. Формы пространственного изобретения элементарной ячейки нитратов РЗЭ с биуретом кристаллической решетки моноклинной системы:

8. La(NO_3)₃ * 25 * 5 H_2O , 12. Sm(NO_3)₃ * 25 * 2 H_2O 9. Nd(NO_3)₃ * 25 * 2 H_2O , 13. Ho(NO_3)₃ * 45 * 2 H_2O 10. Gd(NO_3)₃ * 25, 14 Dy(NO_3)₃ * 45 * 2 H_2O 11. Er(NO_3)₃ * 45 * 2 H_2O , 15. Pr(NO_3)₃ * 25 * 2 H_2O

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА №6, 2017

Таблица 1

		<u> </u>		~
I O DOMOTRI I O DOMONTO DUOL	\mathbf{T}	0.014011 BOILLOTIAL III	\mathbf{T}	W DRAMANTAR A ANNATAN
тапаметны тементапной	4 мменики книсти пиме	еккий пепеки ни	1114111B 1121K132M215H5	X 4 IPMPHIMR C DMVDPIDM
 1404/101001 2210/10111401101				
The second secon			Free Free Free Free Free Free Free Free	

N⁰	Названий соединений	Молекулярный вес, М а.е.м	Объем элементарной ячейки, V 10 ⁻³⁶ см ³	Значение позиционных координатов, в Å						c p	ства сединиц	іьные ти в%
				a	В	с	α	β	γ	Удельный ве г/см ³	Количес формульных	Относител погрешнос
1	Lu(<i>NO</i> ₃) _{3.} * 4B * H ₂ O	891,13	579,46	9,4954	7,8165	8,7457	90,00	63,13	90,00	2,55	64	0,009
2	Yb(<i>NO</i> ₃) _{3.} * 45	771,38	1079,45	9,9782	13,4045	8,2411	90,00	91,00	90,00	1,88	61	0,002
3	Tm(NO ₃) _{3.} * 45	767,27	553,13	10,9264	7,8586	9,2421	90,00	44,11	90,00	2,303	61	0,001
4	Tb(<i>NO</i> ₃) _{3.} * 4B	757,59	608,5	11,5740	6,6262	8,8083	90,00	78,00	90,00	2,06	61	0,01
5	Gd(<i>NO</i> ₃) _{3.} * 45	755,59	812,24	10,2756	7,6989	9,1957	90,00	91,00	90,00	1,544	61	0,06
6	Eu(<i>NO</i> ₃) _{3,} * 4Б(сп)	750,3	549,7	10,4574	8,5464	8,7703	90,00	44,31	90,00	2,26	61	0,03
7	Ce(NO ₃) _{3.} * 2E * 5H ₂ 0	622,29	357,5	8,7266	6,5542	6,8467	90,00	65,6	90,00	2,88	52	0,04
8	La(NO ₃) _{3.} * 25 * 5H ₂ O	621,08	458,19	9,8253	7,9001	8,6724	90,00	91,00	90,00	2,25	52	0,001
9	Nd(NO ₃) _{3.} * 25 * 2H ₂ O	572,42	381,2	8,5667	6,5834	6,7678	90,00	87,00	90,00	2,49	43	0,05
10	Gd(NO ₃) _{3.} * 25	549,43	754,1	10,7106	7,8622	8,8011	90,00	91,00	90,00	1,21	37	0,002
11	Er(NO ₃) _{3.} * 4E * 2H ₂ O	801,16	633,72	9,6992	7,4375	8,5949	90,00	92,5	90,00	2,098	69	0,002
12	Sm(NO ₃) _{3.} * 2E * 2H ₂ O	578,56	736,26	13,5500	6,3366	8,3569	90,00	91,00	90,00	1,304	69	0,02
13	Ho(NO ₃) _{3.} * 4B * 2H ₂ O	799,3	2271,69	16,2850	7,5800	13,3000	90,00	112,5	90,00	0,584	69	0,01
14	Dy(NO ₃) _{3.} * 45 * 2H ₂ O	796,87	488,6	9,6101	6,6250	7,4429	90,00	92,00	90,00	2,707	69	0,01
15	Pr(NO ₃) _{3.} * 25 * 2H ₂ O	383,07	490,4	12,5140	6,6789	7,4750	90,00	92,05	90,00	1,298	43	0,01

Таблица 2

Параметры элементарной ячейки кристаллической решетки нитратов редкоземельных элементов с биуретом

Nº	2 Названий соединений	Кол-ва атомов іентарных ячейки, Z	Соотношение позиционных	координатов	Массы дельноймолекулы m · 10 ⁻²⁹ кг	Линейные размеры молекулы, L 10 ⁻¹² см	Количества атомов		⁄дельный объем Vy см³ /гр	Молекулярный :м ³ /моль объем /моль	аметр молекулы, D 10 ⁻¹² см
		элем	c/a	с/в	TO		кисло-	водо- рода		Vm 6	Ŕ
1	Lu(NO ₃) _{3.} * 45 * H ₂ O	10	0,92	1,12	14,803	2,466	18	21	0,392	349,46	0,785
2	Yb(NO ₃) ₃ , * 4B	15	0,82	0,61	12,814	2,097	17	20	0,434	410,31	0,668
3	Tm(<i>NO</i> ₃) _{3.} * 46	10	0,84	1,18	12,745	2,058	17	20	0,532	333,16	0,655
4	Tb(<i>NO</i> ₃) _{3.} * 4B	10	0,83	1,33	12,579	1,981	17	20	0,485	367,61	0,631
5	Gd(<i>NO</i> ₃) ₃ .*45	6	0,81	1,19	12,551	1,967	17	20	1,075	490,64	0,626
6	Eu(<i>NO</i> ₃) _{3.} * 4Б(сп)	10	0,84	1,03	12,463	1,925	17	20	0,442	331,99	0,613
7	Ce(NO ₃) _{3.} * 25 * 5H ₂ 0	10	0,08	1,04	10,337	1,099	18	15	0,347	216,06	0,350
8	La(NO ₃) _{3.} * 2B * 5H ₂ O	10	0,88	1,09	10,317	1,090	18	15	0,444	276,03	0,347
9	Nd(NO ₃) _{3.} * 25 * 2H ₂ O	10	0,79	1,03	9,509	1,020	15	12	0,402	229,88	0,328
10	Gd(NO ₃) _{3.} * 25	10	0,82	1,12	9,126	1,000	13	10	0,826	454,07	0,318
11	Er(NO ₃) _{3.} * 4 5 * 2H ₂ O	10	0,88	1,15	13,308	2,0021	19	24	0,477	381,87	0,638
12	Sm(NO ₃) _{3.} * 2B * 2H ₂ 0	10	0,62	1,32	13,049	2,044	15	14	0,767	443,68	0,651
13	Ho(NO ₃) _{3.} * 45 * 2H ₂ O	10	0,82	1,75	13,277	2,0014	19	24	1,880	1368,67	0,637
14	Dy(NO ₃) ₃ * 45 * 2H ₂ O	10	0,77	1,12	13,237	2,0012	19	24	0,370	294,37	0,637
15	Pr(NO ₃) ₃ , * 2E * 2H ₂ O	10	0,59	1,11	6,363	1,865	15	12	0,444	170,25	0,594

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА №6, 2017

вывод

1. Впервые определены параметры элементарной ячейки: *a*, b, c, *a*, *β*, *γ* или V.

2. Вычислены: масса и длина молекулы, а так же количество молекул содержащегося в элементарной ячейке.

3. Результаты работы могут быть использованы на практических занятиях по физике твердого тела.

Литература:

 Акматова М.Р. Координационные соединения нитратов РЗЭ, Мg и Са с биуретом и их физико-химические свойства, Канд. дис.на соискание уч. степени хим. наук. -Бишкек. - 1997. с -14.

- Абдыбалиев Д.А. Синтез и изучение соединений анилина методами физика-химического анализа //Изв. Кирг. ССР. сер.хим-биол. науки-Фрунзе.Деп.во ВИНИТИ от 15.08. 89. N 5483-B89.
- 3. Lipson H. Acta. Cryst. 2, 49.-1949.
- Азаров Л.Б., Бургер М.И. Метод порошка в рентгенографии. - ИЛ. – 1949.
- Липсон Г. Стипл Г. Интерпретация порошковых рентгенограмм //Пер.с англ. Е.Н.Беловой и Г.П. Литвинской. Под ред. Академика Н.В.Белова. - М.- Мир. - 1972-384 с.
- de Wolff P.M. Adv, in X-ray Analisis. Vol. 6. Plenum Press. New.York.-1963
- 7. Ito T. X-ray Studies in Polymorphism. Maruzen.-Tokyo.-1950.
- 8. Нудельман С.А. Расшифровка рентгенограмм методом переменного масштаба, М. Госгеологтех-издат. -1962
- Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. - М. Физматиздат. -1961.-863 с.

Рецензент: д.ф-м.н., профессор Чечейбаев Б.Ч.