# Абдыбалиев Д.А., Ибраимова К.Б., Абдыбалиев Т.Д. КЭЭ БИР ТИОКАРБАМИДДЕРДИН ООР МЕТАЛЛДАР МЕНЕН КОШУЛМАЛАРЫНАН ПАЙДА БОЛГОН ТУЗДАРЫНЫН КРИСТАЛЛОГРАФИЯЛЫК ЖАНА КРИСТАЛЛОХИМИЯЛЫК ТҮЗҮЛҮШ КУРАМЫН ОКУП ҮЙРӨНҮҮ

Абдыбалиев Д.А., Ибраимова К.Б., Абдыбалиев Т.Д.

## ОПРЕДЕЛЕНИЕ КРИСТАЛЛОГРАФИЧЕСКИХ И КРИСТАЛЛОХИМИЧЕСКИХ ПАРАМЕТРОВ НЕКОТОРЫХ ТИОКАРБАМИДНЫХ СОЛЕЙ ТЯЖЕЛЫХ МЕТАЛЛОВ

# D.A. Abdybaliev, K.B. Ibraimova, T.D. Abdybaliev THE DEFINITION OF CRYSTALLOGRAPHIC AND CRYSTALCHEMIC PARAMETER OF SOME TIOCARBAMIDE SALTS OF HEAVY METALS

### УДК: 548:54-162:678.044,45,549,25(04)

Бул макалада кээ бир оор металлдардын тиокарбамиддери жана анын туздарынын элементардык кичинекей узчаларынын өлчөмдөрү: a, b, c, a, β, ү жана V чоңдуктары аныкталган.

Андагы молекулаларынын массасы, узундуктары, диаметрлери менен алардын кичинекей уячаларындагы жалпы молекулаларынын саны эсептелип чыккан.

*Негизги сөздөр:* оор металлдар, тиокарбамиддер, туздар, уячалар.

В данной статье определены параметры элементарной ячейки тиокарбамидных солей тяжелых металлов: a,b,c,α,β,γ и V.

Определены следующие величины: масса, длина и диаметры молекулы, а также количество молекул содержащихся в элементарной ячейке.

**Ключевые слова:** тиокарбамид, соли тяжелых металлов, ячейка, кристаллография, кристаллохимия.

The crystalgraphic and crystalchemic parameter of simple cells such as: a, b, c,  $\alpha$ ,  $\beta$ ,  $\gamma$ , V and crbamide and tiocrbamide salts of metalls. Besides, the lineal measures, molecule diameters and quantity of molecule in simple cell have been.

*Key words: crbamide, tiocrbamide, salts, metals, parameter, simple, quantity.* 

Подготовка исследуемых объектов (пробы) и их съемки проводились на рентгеновском аппарате УРС-50 ИМ на медном излучении с никелевым фильтром в режиме U=70кВ и i=35мA, в рентгеновской лаборатории ИНФХ НАН КР [2].

В результате эксперементально получены значения относительных интенсивностей  $J/J_0$ дифракционных линий, а тагже межплоскостные расстояние  $d_{\alpha}/n$  в Å. Полученные значения  $J/J_0$  и  $d_{\alpha}/n$  в Å является исходным объектом для дальнейшего изучения строения и структуры тиокарбамидных солей тяжелых металлов [1].

Необходимо испробовать следующие аналитические методы вычисления для системы:

кубической, тетрагональной, гексагональной, тригональной и иногда ромбической (или моноклинной типы кристаллической решетки [3,4,6]).

Таким образом, можно найти признаки о принадлежности и соответствующие закономерность в той или иной кристаллической решетки системы. Кроме того, существуют графические методы для установление и определения параметров кристаллической решетки элементарной ячейки [1,2].

Рассматривая сложные химические соединения, и тиокарбамидных солей и некоторых тяжелых металлов можно проводить вычисления ряд методов разработанные авторами [4]. В результате стало известно, что образцы выше названных соединений тяжелых металлов кристаллизуются в моноклинной системе кристаллической решетки.

Для определения величин sin<sup>2</sup> Ф ромибической (или моноклинной) сингонии в квадратной форме параметров элементарной ячейки выражается по формуле [6]:

$$\sin^2 \Theta_{hkl} = (\lambda^2/4a^2 \sin^2 \beta)h^2 + (\lambda^2/4c^2 \sin^2 \beta)\ell^2 - (\lambda^2 \cos \beta/2a c \sin^2 \beta)h\ell + (\lambda^2/4b^2k^2)...$$
(1)

Уравнение (1) можно написать в другой форме:

$$sin^{2} (\lambda^{2}/4)*((h^{2}/a^{2}+\ell^{2}/c^{2}-2hlcos\beta/ac+k^{2}/b^{2})/sin^{2}\beta)...$$
 (2)

где a, b, c параметры элементарной ячейки,  $\lambda$  длина волны рентгеновского излучения, ребро b перпендикулярно плоскости в которой лежат ребра a и c, a угол  $\beta$  составляющее между гранями элементарной ячейки a и c.

## НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА №6, 2017

#### Таблица 2

| N≌ | Название<br>соединений<br>Параметры<br>элементарной<br>ячейки<br>кристаллической решетки |     | PbSO4*4(NH2)2*CS | Cd SO4*4(NH2)2*CS*5H2O | Cd SO4*4(NH2)2*CS* 3 H2O | Cd SO4*(NH2)2*CS*3 H2O | Zn SO4*4(NH2)2CS |
|----|------------------------------------------------------------------------------------------|-----|------------------|------------------------|--------------------------|------------------------|------------------|
| 1  | Молекулярный вес М.а.е.м                                                                 |     | 475,52           | 470,78                 | 434,69                   | 338,63                 | 333,71           |
| 2  | Молекулярный объем, Vm, см <sup>3</sup> /моль                                            |     | 208,4            | 474,5                  | 637,2                    | 141,5                  | 214,5            |
| 3  | Удельный вес, р, г/ см <sup>3</sup>                                                      |     | 1,3              | 1,7                    | 2                        | 1,7                    | 1,9              |
| 4  | Удельный объем, <i>Vy</i> , см <sup>3</sup> /гр                                          |     | 0,757            | 0,558                  | 0,497                    | 0,595                  | 0,532            |
| 5  | Значение позиционных                                                                     | a   | 9,6017           | 13,2052                | 13,2684                  | 8,4239                 | 8,425            |
|    | координатов, в А                                                                         | В   | 4,425            | 6,3890                 | 9,534                    | 4,491                  | 6,493            |
|    |                                                                                          | с   | 6,7317           | 9,7375                 | 10,268                   | 6,4001                 | 7,4587           |
| 6  | Соотношение между величинами: а, в, с.                                                   | c/a | 0,701            | 0,737                  | 0,774                    | 0,759                  | 0,885            |
|    |                                                                                          | c/a | 1,521            | 1,524                  | 1,077                    | 1,425                  | 1,149            |
| 7  | Углы между составляющими<br>гранями, в градусах                                          | α   | 90               | 90                     | 90                       | 90                     | 90               |
|    |                                                                                          | β   | 72,44            | 79                     | 70                       | 80,1                   | 81,13            |
|    |                                                                                          | γ   | 90               | 90                     | 90                       | 90                     | 90               |
| 8  | Количество формульных единиц                                                             |     | 20               | 39                     | 37                       | 23                     | 32               |
| 9  | Масса одной молекулы, m, 10 <sup>-29</sup> гр                                            |     | 78,99            | 78,21                  | 72,22                    | 56,25                  | 55,43            |
| 10 | Линейные размеры, L, 10 <sup>-12</sup> см                                                |     | 1,99             | 1,98                   | 1,93                     | 1,77                   | 1,76             |
| 11 | Объем элементарной ячейки, V, 10 <sup>-36</sup> см <sup>3</sup>                          |     | 275,12           | 806,67                 | 1280,78                  | 237,36                 | 403,32           |
| 12 | Количество молекулы, Z                                                                   |     | 4                | 17                     | 17                       | 7                      | 7                |
| 13 | Диаметры молекулы, D, 10 <sup>-12</sup> см                                               |     | 0,634            | 0,630                  | 0,615                    | 0,564                  | 0,560            |
| 14 | Радиусы молекулы, r, 10 <sup>-12</sup> см                                                |     | 0,317            | 0,315                  | 0,307                    | 0,282                  | 0,280            |
| 15 | Относительные ошибки в %                                                                 |     | 0,03             | 0,04                   | 0,05                     | 0,01                   | 0,03             |

Рентгенографические параметры некоторых соединений тиокарбаледных солей тяжелых металлов

Вычисления по уравнению (2) очень сложны и трудоемки. Для индицирования рентгенограммы введем обозначение уравнение (2) и имеем:

$$\sin^2 \theta h k \ell = A h^2 + B k^2 + C I^2 \dots$$
(3)

$$A = (\lambda^2/4a^2)\sin^2\beta = \sin^2\theta hoo...$$
(4)

$$B = (\lambda^2/4b^2)\sin^2\beta = \sin^2\Theta oko...$$
(5)

$$C = (\lambda^2/4c^2)\sin^2\beta = \sin^2\theta oo\ell...$$
 (6)

С учетом уравнения (4), (5) и (6), также (3) получим следующее выражения:

$$\sin^2 \theta hk\ell = \sin^2 \theta hoo + \sin^2 \theta_{OKO} + \sin^2 \theta_{OO}\ell -$$

 $2hlSin\Theta_{h00}$  ·  $Sin\Theta_{00\ell} cos\beta$  ...

где

Из эксперимента можно найти следующие значения:

 $\sin^2 \Theta_{\rm hco}$  соответствующие к  $\sin^2 \Theta_{100}$  $\sin^2 \Theta_{\rm oko}$  соответствующие к  $\sin^2 \Theta_{010}$  $\sin^2 \Theta_{00}$  соответствующие к  $\sin^2 \Theta_{001}$ где h, k и l-может принимать значение ряд натуральных целых и дробных чисел, как положительные, так и отрицательные.

После чего можно идентифицировать ренгенограммы, а для рефлексов hko и ok $\ell$ , методом сравнения по значениям  $\sin^2 \Theta$  из экспериментальных и вычисленных данных.

Далее угол β определяется по уравнению (2) или (6). [5,6]. Таким образом, все полученные данные параметры элементарной ячейки занесены на таблице 1.

(7)

### НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА №6, 2017

Построены формы и виды пространственного изображения элементарной ячейки моноклинной системы кристаллической решетки [5] показано на рис.1.



Рис. 1. Виды и формы пространственного изображения элементарной ячейки некоторых тиокарбамидных солей тяжелых металлов в кристаллической решетке моноклинной системы.

1.  $PbSO_4*4(NH_2)_2*CS$ , 4.  $CdSO_4*(NH_2)_2*CS*3H_2O$ , 5.  $ZnSO_4*4(NH_2)_2*CS$ 

2.  $CdSO_4*4(NH_2)_2*CS*5H_2O$ ,

3. Cd
$$SO_4$$
\*4(*NH*<sub>2</sub>)<sub>2</sub>\*CS\* 3 $H_2$ O

### Вывод

1. Определены параметры элементарной ячейки кристаллической решетки: (a, b, c,  $\alpha$ ,  $\beta$ ,  $\gamma$ и V.) тиокарбамидных солей тяжелых металлов.

2. Вычислены: масса, длина, и диаметры молекулы, а также количество молекул содержащихся в элементарной ячейки.

3. Результате работы могут быть использованы на практических занятиях по физике твердого тела.

#### Литература:

1. Акбаев А.А. Взаимодействие солей тяжелых металлов с азотосодержащими соединениями и физактивных веществ. - Фрунзе. - Илим. - 1984. - 470 С.

- 2. Абдыбалиев Д.А. Методическое руководство к лаб. работам = «Физические основы рентгеноструктурного анализа» для студентов Кыргызского горно-металлургического института им. академика У.А.Асаналиева -Бишкек. - ИЦ Техник. - 2000.-14 с.
- 3. Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов//Под ред. проф. Я.С. Уманского. Изд-во физмат. лит. - 1961. - 860 с.
- 4. Липсон Г. Стипл Г. Интерпретация порошковых рентгенограмм. / Пер. с англ. Е.Н. Беловой и Г.П. Литвинской// Под ред. академика Н.В. Белова. - Мир. - М-1972 - 384 c.
- 5. Абдыбалиев Д.А. и др. Начертательная геометрия с основами инженерной графики. - Б.- 2013. - 30 с.
- Lipson H. The interpretation of X-zay Diffzaction Photographs, Macmillan. London. -1960.

Рецензент: к.ф-м.н., доцент Байтереков А.Т.