Абдыбалиев Д.А., Ибраимова К.В., Мураталиева А.Р.

ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ И СТРОЕНИЕ НЕКОТОРЫХ МЕДНЫХ СОЕДИНЕНИЙ НАТРИЯ И ФОСФОРА

D.A. Abdybaliev, K.B. Ibraimova, A.R. Muratalieva

THE STUDY OF THE CRYSTAL STRUCTURE AND IS SOME COPPER COMPOUNDS WITH PHOSPHORIES AND SODIUM

УДК: 548.3:546.18(04).

Бул макалада жездин натрий жана фосфор менен реакцияга киргенде пайда болгон кээ бир куймаларынын кристаллдык курамы каралган.

Алардын жөнөкөй уячаларынын өлчөмдөрү $a,b,c,\alpha,\beta,\gamma$ жана көлөмү V, ошондой эле ичинде камтылган молекулалардын саны көрсөтүлгөн.

Негизги сөздөр: жөнөкөй уяча, натрий, фосфор, жез, кристаллдын түзүлүш курамы, куймасы.

В данной работе изученые кристаллические строение некоторых медных соединений натрия и фосфора. Определены параметры элементарной ячейки: $a,b,c,a,\beta,\gamma u\ V$, а также количества молекул содержащего в элементарной ячейке.

Ключевые слова: ячейка, натрий, фосфор, медь, кристалл, строение, соединение.

The crystall structure and is some copper compounds of and phosphorus is studied in this work.

The parameter of an elementary cell a.b.c.o. β , γ . V is defined togefther with the number of molecules comfained in elementary cell.

Key words: crystal, structure, compounds, phosphor, copper parameter and cell.

Рентгенографические фазовые анализы некоторых медных соединений натрия, фосфора были выполнены в рентгеновской лаборатории Всесоюзного научно-исследовательского института удобрений имени Я. В. Самойлова (руководитель лаборатории доктора наук, профессора В. Г. Кузнецова) г. Москва [1.2]

Полученные данные рентгенографического анализа значение величины j/j_0 относительные интенсивной дифракционный линии и d_α/n межплоскостное расстояние интерфереционной линии является исходным материалом для изучение и продолжение к исследованию.

Проводя много работ, как аналитические, так и графические методы вычисление [3], а также используя методы переменного масштаба, можно предположить, что некоторые медные соединение натрия и фосфора кристаллизируется в моноклинной системе кристаллической решетки.

Поэтому для определения параметров элементарной ячейки можем испробывать пакета математических прикладных программ для установления параметров кристаллической и кристаллографической ячейки Вагнера-Зейтинца. [3.8]

С другой стороны появляется классические возможности где можно определить эти же величины разработанные ряд авторами [4-7] методы, как для ромбической так и для моноклинной сингонии.

С целью интерпретации порошкограммы некоторых медных соединений натрия и фосфора. так и для ромбической (или моноклинной) систем уравнения величины $sin^2\theta$ имеет вид:

$$sin^2 \theta_{hkl} = \frac{\lambda^2}{4} \left(\frac{h^2}{a^2} + \frac{l^2}{c^2} - 2hlcos\beta / a * c + \frac{k^2}{b^2} \right) / sin^2 \beta$$
 (1)

где ребров перпендикулярно плоскости в который лежат ребра а и с. Вычисление сокращаются, если использовать для выражения $sin^2\theta$ исходить из параметров обратной элементарной ячейки, а именно

$$a^* = \frac{1}{a}, b^* = \frac{1}{b}, c^* = \frac{1}{c}...$$
 (2)

Если уравнение (2) поставить на уравнение (1) то имеем следующие:

$$\sin^2 \theta_{hkl} = \frac{\lambda^2}{4} (h^2 a^{x2} + t^2 b^{\forall 2} + l^2 c^{*2} + 2 lh c^x a^x cos \beta^x)$$
 (3)

Тогда для каждой из низших систем можно прибегнуть к дальнейшему упращению графического метода построение и обратной решетки. [3.8]

Для веществ относящихся моноклинной или ромбической системы при расшифровке рентгенограмм, приходится определить три коэффициенты , которые связаны с экспериментальными значением $sin^2~\theta$ уравнением.

$$sin^2\theta_{hkl} = Ah^2 + Bk^2 + Cl^2$$
(4)

Вычислив значения трех коэффициентов, составляем таблицы величин: Ah^2 , Bk^2 , Cl^2 и их суммы дадут возможные значения sin^2 θ [9]. Тогда для коэффициентов, с учетом уравнение (1), (2), (3), и (4) имеем следующие выражение:

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 3, 2017

$$Ah^2 = \frac{\lambda^2 a^2}{4} = \sin^2 \theta_{hoo} \tag{5}$$

$$Bk^2 = \frac{x^2b^2}{4} = \sin^2\theta_{oko}$$
 (6)

$$Cl^2 = \frac{\lambda^2 c^2}{4} = \sin^2 \theta_{ool} \tag{7}$$

где λ длина волны рентгеновского излучение .

Тогда уравнение (4) принимает вид

$$sin^2\theta_{hkl} = sin^2\theta_{hoo} + sin^2\theta_{oko} + sin^2\theta_{ool} \dots (8)$$

Следовательно, используя приемы и методы интерпретации порошковых рентгенограмм, можно и в моноклинных, в некоторых случаях триклинных кристаллах, найти величины (h,k,l из уравнение (5), (6), (7) и проиндицировать для рефлексов hko и okl путем сравнения вычисленных и экспериментально полученных величин $sin^2\theta$ [6,7,9,]

Из формулы (5), (6), (7) считаем известными a, b, c, то соs β из уравнение (1) можно найти по значению $sin^2\theta$ для еще не проиндицированных линий hkl.

Таким образом, вычисленные значения a.b.c.α.β.γ и объемы V элементарной ячейки занесены на таблице 1, а пространственное изображение элементарной ячейки кристаллической решетки показано на рис. 1.

Puc 1.Форма и виды пространственного изображение элементарной ячейки некоторых медных соединений натрия и фосфора в моноклинной сингонии.

- 1) $CuCO_3 * Na_2CO_3 * 5H_2O$
- 2) $CuCO_3 * NaHCO_3 * 5H_2O$
- 3) $CuSO_4 * Na_2SO_4 * 2H_2O$
- 4) $CuSO_4(NH_4)$ $_2SO_4*6H_2O$
- 5) $CuCO_3 * Cu(OH)_2$
- 6) $Cu(CH_3COO)_2$
- 7) $Cu (PO_4) * 3H_2O$
- 8) $Cu\ HPO_4 * 2H_2O$

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 3, 2017

Рентгенографическое данные фазового анализа некоторых медных соединений натрия и фосфора

№	Название соединений. Параметры кристаллической решетки.	$Cu_3(PO_4)*H_2O$	$CuSO_4 (NH_4)$ $_2SO_4*6H_2O$	$CuSO_4 * Na_2SO_4 * 2H_2O$	$CuCO_3 * Na_2CO_3 * 5H_2O$	$CuCO_3*NaHCO_3*5H_2O$	$CuCO_3*Cu(OH)_2$	Cu HPO ₄ * 2H ₂ O	$Cu(CH_3COO)_2$
1	Молекулярная масса. М.а.е.м.	529,32	399,81	337,68	319,62	297,63	221,11	177,41	159,63
2	Удеальный вес p, г/см ³	1,56	2,77	2,12	0,745	1,675	1,21	4,54	0,61
3	Молекулярный объем Vcм ³ /моль	339,31	144,33	159,28	429,02	180,38	182,73	39,07	261,69
4	Удеальный объем Vy см ³ /гр	0,641	0,361	0,472	0,142	0,597	0,826	0,220	1,639
5	Масса одной молекулы m, 10^{-29} г	87,92	66,41	55,44	53,00	49,36	36,73	29,47	26,52
6	Количества формульных единиц	17	38	19	26	26	10	13	13
7	Значение позиционных а координатов, А	9,6867	6,1497	6,3172	8,9817	8,1460	7,390	4,65	7,2833
	t		4,2530	4,682	6,3692	5,4350	4,5109	2,464	5,5275
		0,5150	5,5759	5,476	12,494	6,7689	5,5353	3,4105	6,515
8	Соотношение позиционных координатов с/а	0,672	0,854	0,864	1,391	0,831	0,749	0,733	0,894
	c/t	- , -	1,311	1,169	1,962	1,245	1,227	1,384	1,179
9	Углы между гранями в градасах		90	90	90	90	90	90	90
	į.	79,42	81,13	83,24	85,01	79,47	81,12	88,12	85,9
	,	90	90	90	90	90	90	90	90
10	Количества молекул, Z	4	2	3	4	6	6	1	6
11	Диаметр молекул D, 10^{-12} см	2,09	1,88	1,78	1,73	1,71	1,51	1,44	1,36
12	Объем элементарной ячейки $V,\ 10^{-36} cm^3$	339,99	399,66	349,78	742,21	294,92	220,65	177,38	260,47
13	Радиусы молекул r,10 ⁻¹² см	1,04	1,44	0,89	0,86	0,85	0,75	0,72	0,68
14	Линейные размеры молекул $L,10^{-12}$ см	6,56	5,90	5,59	5,43	5,37	4,74	4,52	4,27
15	Относительные ошибки, в %	0,01	0,08	0,03	3,75	0,02	0,002	0,01	0,04

Вывол

- 1. Впервые определение параметры элементарной ячейке: а.b.с.α.β.γ и объемы V.
- 2. Вычислены: длина и диаметры молекул содержащего в элементарной ячейке.
- 3. Результаты работы могут быть использованы на практических занятиях по физике твердого тела.

Библиографический список литературы

- 1. Хлапкова А. Н. Кузнецов В.Г Рентгенографический качественный анализ котельных накипей.-М.-Наука-1952
- 2. Акбаев А.А. Взаимодействия солей тяжелых металлов азотосодержащими соединениями и физактивных веществ .- Фрунзе .-Илим.-1984 498 с
- 3. Миркин Л.И Справочник по рентгеноструктурному анализу поликристаллов/ под ред. проф Я.С. Уманского . Изд-во.-Физмат.-1961- 863 с
- 4. Lipson H. Acta Cryst.2.43.-1949
- 5. Липсон Г. Кокрен В. Определение структуры кристаллов .ИЛ, М. 1956
- 6. Нудельман А. Расшифровка порошковых рентгенограмм методом переменного масштаба. М.-Госгеологтехиздат. -1952
- 7. Липсон Г. Стипл Г. Интерпретация порошковых рентгенограмм // Перев. С англ. Е.Н. Беловой и Г. П. Литвинской.-М.-1972.-384 с
- 8. Абдыбалиев Д.А Изучение кристаллической структуры соединений пиперазин сульфата и М- нитробензойнокислого и пиперазина с солями 2-х валентных металлов// Международ . конф . посвящ . к 20 летию образования ИГД и ГТ им. академика У.А. Асаналиева. Изв. КГТУ им. Раззакова Б. -2013 . -T28. С. 458-461
- 9. Абдыбалиев Д.А., Султаналиева Р. М. и др. Изучение структуры и строение анализа с солями 2-х и 3-х валентными металлами// Хабаршы. Вестник серий «Начальная школа и физкультура» Казахский. НПУ им. Абая. Алматы.-2014. -№ 4(43).- с 36-38

Рецензент: д.ф.-м.н, профессор Чечейбаев Б.Ч.