Сатывалдиева Г.Э., Сатывалдиев А.С., Кубанычбек к. Айзада ГРАФИТТИН НАНОКҮКҮМДӨРҮН МЕТАЛЛДАР МЕНЕН

ГРАФИТТИН НАНОКҮКҮМДӨРҮН МЕТАЛЛДАР МЕНЕН ИНТЕРКАЛЯЦИЯЛОО

Сатывалдиева Г.Э., Сатывалдиев А.С., Кубанычбек к. Айзада

ИНТЕРКАЛИРОВАНИЕ НАНОПОРОШКОВ ГРАФИТА МЕТАЛЛАМИ

G.E. Satyvaldieva, A.S. Satyvaldiev, Kubanychbek k. Aizada GRAPHITE NANOPOWDERS INTERCALATION WITH METALS

УДК: 546.26-162

Методами рентгенофазового анализа и электронной микроскопии показано, что при восстановлении металлов в присутствии продукта электроискрового диспергирования графита в спирте происходит образование нанодисперсных частиц металлов.

Ключевые слова: графит, медь, серебро, электроискровое диспергирование, интеркалирование.

Графитти спирте электр учкундук дисперство продуктасынын катышуусу менен металлдарды калыбына келтиргенде металлдардын нанодисперстүү бөлүкчөлөрү пайда болору рентген фазалык анализ жана электрондук микроскопия методдору менен көрсөтүлгөн.

Негизги сөздөр: графит, жез, күмүш, электр учкундук дисперстөө, интеркаляциялоо.

By the method of X-ray diffraction analysisand electron microscopy was shown that during reduction of metals in the presence of product of electro-spark dispersion of graphite in alcohol is formed nanosized metal particles.

Key words: graphite, copper, silver, electro-spark dispersion, intercalation.

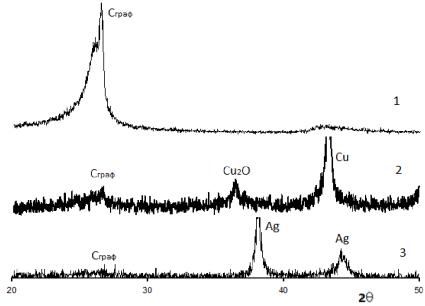
Среди веществ, обладающих 2D решеткой, графит занимает особое место вследствие своей способности к образованию множества интеркалированных соединений графита. Интеркалированные соединения графита обладают регулярной слоистой структурой, высокой анизотропией свойств, а также возможностью вариации составов интеркалированного слоя [1].

Наиболее известны акцепторные интеркалированные соединения с сильными кислотами H_2SO_4 и HNO_3 , на основе которых получают такие уникальные углеродные материалы как окисленный графит, пенографит и различные композиты многофункционального назначения. Неослабевающий интерес к фундаментальным и прикладным проблемам данного научного направления вызван не только многообразием областей применения ИСГ и их производных, но и потенциальными возможностями целенаправленного создания материалов с заданным сочетанием свойств [1].

Успешное решение прикладных задач невозможно без развития фундаментальных исследований. В связи с этим изучение закономерностей процессов образования и физико-химических свойств интеркалированных соединений графита, полученных из продуктов электроискрового диспергирования графита, является актуальной задачей, т.к. продукты электроискрового диспергирования графита представляют собой нанодисперсную систему [2].

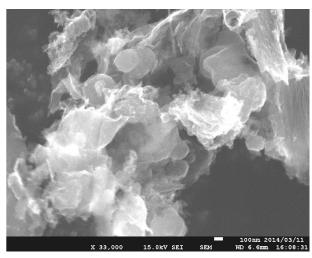
Целью настоящей работы является изучение возможности интеркалирования продуктов электроискрового диспергирования графита металлами.

Интеркалирование металлами продукта электроискрового диспергирования графита в спирте проводился следующим образом. Определенное количество продукта электроискрового диспергирования графита в спирте добавляется в растворы солей меди или серебра с определенной концентрацией металлов. Соотношение графита и металлов в растворе составляло 1:3. Затем проводился восстановление металлов гидразином. В зависимости от природы восстанавливаемого металла процесс проводился в аммиачной (для меди) или нейтральной (для серебра) среде.


Определение фазового состава продукта электроискрового диспергирования графита и его интеркалированных соединений проводился методом рентгенофазового анализа. Дифрактограммы снимались на дифрактометре RINT-2500 HV на медном отфильтрованном излучении. Дисперсность продукта электроискрового диспергирования графита и его интеркалированных соединений изучали методом электронной микроскопии. Микрофотографии продуктов сняты на эмиссионном сканирующем электронном микроскопе JOEL JSM-7600F.

Ранее [3] нами методами рентгенофазового анализа и электронной микроскопии установлен фазовый состав и морфология исходного и интеркалированного серной кислотой в присутствии окислителя — КМпО₄ продукта электроискрового диспергирования графита в воде.

На рисунке 1 представлены участки дифрактограмм исходного продукта электроискрового диспергирования графита в спирте и его продуктов интеркалирования металлами.


Сравнение дифрактограмм исходного продукта электроискрового диспергирования графита в спирте и его продуктов интеркалирования показывает, что действительно в составе продуктов интеркалирования металлами находятся соответственно медь и серебро. Линия на дифрактограмме, соответствующая к графиту, в продуктах интеркалирования проявляется очень слабо. На дифрактограмме продукта, интеркалированного медью, еще имеется линия, характерная для оксида меди Cu₂O.

На рисунках 2-4 представлены микрофотографии продуктов электроискрового диспергирования графита в спирте до и после интеркалирования металлами.

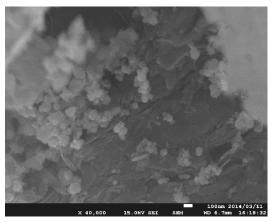


Рис.1. Участки дифрактограмм исходного продукта электроискрового диспергирования графита в спирте (1) и его продуктов интеркалирования медью (2) и серебром (3).

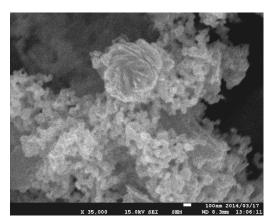

Анализ микрофотографий показывает, что при электроискровом диспергировании графита в спирте образуются продукты различной формы и дисперсности. На микрофотографии продукта электроискрового диспергирования графита в спирте хорошо видны нанодисперсные частицы сферической формы, а также частицы в виде пленок толщиной до 10 нм. При интеркалировании продукта электроискрового диспергирования графита в спирте металлами, металлы образуют нанодисперсные частицы с размерами менее 10 нм, которые находятся на поверхности высокодисперсных частиц графита в виде агрегатов (рис.3 и 4).

Рис.2. Микрофотография продукта электроискрового диспергирования графита в спирте.

Рис.3. Микрофотография продукта электроискрового диспергирования графита в спирте после интеркалирования медью

Рис.4. Микрофотография продукта электроискрового диспергирования графита в спирте после интеркалирования серебром.

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 2, 2017

Таким образом, методами рентгенофазового анализа и электронной микроскопии установлены фазовый состав и морфология металлов, интеркалированных в продукты электроискрового диспергирования графита в спирте. Показано, что восстановленные на графите частицы металлов с размерами менее 10 нм образуют агрегаты.

Литература:

1. Сорокина Н.Е., Никольская И.В., Ионов С.Г., Авдеев В.В. Обзоры. Интеркалированные соедине-

- ния графита акцепторного типа и новые углеродные материалы на их основе // Изв. Академии наук, сер. хим., 2005, т.54, №8. С.1699-1716.
- 2. Сорокина Н.Е., Авдеев В.В., Тихомиров А.С. и др. Композиционные наноматериалы на основе интеркалированого графита.- М.: МГУ, 2010.–50с.
- Сатывалдиева Г.Э., Тойлубаев Э.К., Сатывалдиев А.С. Интеркалирование высокодисперсного порошка графита, полученного при электроискровом диспергировании графита в воде // Наука и новые технологии, 2014, №4. – С.165-167.

Рецензент: к.х.н., доцент Жаснакунов Ж.К.