<u>ХИМИЯ</u> <u>ХИМИЯ</u> CHEMISTRY

Абдыбалиев Д.А., Ибраимова К.Б., Мураталиева А.Р., Кочоков С.К.

АНИЛИНДИН ХИМИЯЛЫК КУЙМАЛАРЫНЫН ПИРОФОСФАТ ЖАНА ЖЕЗДИН КРИСТАЛЛДЫК ЖАНА КРИСТАЛЛОХИМИЯЛЫК ТҮЗҮЛҮШ КУРАМЫНЫН ЧОНДУКТАРЫН АНЫКТОО

Абдыбалиев Д.А., Ибраимова К.Б., Мураталиева А.Р., Кочоков С.К.

ОПРЕДЕЛЕНИЕ КРИСТАЛЛОГРАФИЧЕСКИХ И КРИСТАЛЛОХИМИЧЕСКИХ ПАРАМЕТРОВ НЕКОТОРЫХ СОЕДИНЕНИЙ ПИРОФОСФАТОВ АНИЛИНА И МЕДИ

D.A. Abdybaliev, K.B. Ibraimova, A.R. Muratalieva, S.K. Kochokov

THE DEFINITION OF CRYSTALLOGRAPHIC AND CRYSTAL CHEMICAL PARAMETERS OF SOME COMPOUNDS WITH PYROPHOSPHATES ANILINE AND COPPER

УДК:548.661.635.66 (04). А-13

Бул макалада пирофосфат анилин жана жездин кошулмаларынан алынган химиялык заттардын кристаллдык өлчөмдөрү а, в, с, α, β, ү, V аныкталган.

Вегнер-Зейтинца уячасындагы молекулаларынын сандары менен алардын массаларынын чондуктары жана көлөмү эсептелген.

Негизги сөздөр: пирофосфат анилин, химиялык куймалар, Вегнер-Зейтинца жөнөкөй уячалары, рентгенографиялык анализ.

Впервые определены величины кристаллохимических и кристаллографических параметров элементарной ячейки: а, в, с, α, β, γ и V.

Вычислены: количество молекул содержащийся в ячейке Вегнера - Зейтинца, а также установлены пространные изображения кристаллической решетки пирофосфатов анилина и меди.

Ключевые слова: пирофосфат анилина, соединения меди, кристалл, строение, элементарная ячейка Вегнера-Зейтинца, рентгенографический анализ.

The size of crystal chemical and crystallographic parameters of an elementary cell: a, b, c, a, β , γ and V has been first defined there.

The number of molecules are calculated in Vegner-Zeitins cell. Besides the spatial images of crystal lattice is established with pyrophosphates aniline and copper compounds.

Key words: pyrophosphates aniline, copper compounds, crystal, structure, Vegner-Zeitins cell, crystal lattice.

Рентгенографический анализ пирофосфатов анилина и меди был проведен на Всесоюзном институте удобрений им. Я.С. Самойлова города Москвы [1].

Полученные данные анализа: I/I_0 относительная интенсивность дифракционных линий рефлексов и d_{α}/n межплоскостное расстояние показывают кристалличность соединений и имеют определенные формы кристаллов [1,2].

Следовательно, величины I/I_0 и d_{α}/n в Å являются как исходным объектом для дальнейшего изучения строения и структуры кристаллических соединений пирофосфатов анилина и меди.

Целью данной работы является изучение кристаллической и кристаллографической строений некоторых соединений пирофосфатов анилина и меди.

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 9, 2016

Предварительные поисковые расчеты показывают как из работы [3,4], что данные соединения (табл.1) относятся к моноклинной системе кристаллической сингонии.

Для определения параметров элементарной ячейки кристаллической решетки Вегнера-Зейтинца существуют ряд методов: аналитический, графический, статистический и методы переменного масштаба [3,5].

В этом случае для определения параметров кристаллической решетки элементарной ячейки можно проводить по следующему уравнению [3,7].

$$\sin^2\theta_{hkl} = \frac{\lambda^2 h^2}{4a^2} \sin^2\beta + \frac{\lambda^2}{4b^2} k^2 + \frac{\lambda^2 l^2}{4c^2} \sin^2\beta$$
(1)

где *h*, *k*, *l* – Миллеровские индексы плоскостей; *a*, *b*, *c* – параметры элементарной ячейки; *β* – угол между гранями ячейки.

Уравнение (1) можно преобразовать к виду:

$$\sin^2\theta_{hkl} = Ah^2 + Bk^2 + Cl^2 \dots$$
⁽²⁾

отсюда имеем:

$$A_{h}^{2} = \sin^{2}\theta_{h00}, \quad B_{k}^{2} = \sin^{2}\theta_{0k0}, \quad \varkappa \quad C_{l}^{2} = \sin^{2}\theta_{00l}$$
 (3)

Тогда получим:

$$\sin^2 \theta_{hkl} = \sin^2 \theta_{h00} + \sin^2 \theta_{0k0} + \sin^2 \theta_{00l} \dots$$
(4)

Пользуясь экспериментальными данными по уравнению (2), (3) и (4) можно определить значения величины: $\sin^2\theta$ или [*h00*], $\sin^2\theta_{010}$ или [*0k0*], $\sin^2\theta_{001}$ или [*001*], а затем *hk0* и *0kl* путем сравнения вычисленных и экспериментально полученных значений $\sin^2\theta$ [3,4,7].

Результаты сравниваются по величине $1/d_{hkl}^2$ или $\sin^2\theta_{hkl}$ эксперимента и вычисленными значению по уравнению (3) и (4).

Угол β определяется по методике [2,8] комбинаций Миллеровских индексов плоскостей.

Полученные данные занесены в таблицу 1, а пространственное изображение элементарной ячейки кристаллической решетки на рис. 1.

Вывод

- 1. Впервые определены параметры элементарной ячейки $a, b, c, \alpha, \beta, \gamma$ и объемы V.
- 2. Определены линейные размеры молекулы, а также их количество молекул, содержащиеся в элементарной ячейке.
- 3. Результаты работы могут быть использованы на практических занятиях по физике твердого тела.

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 9, 2016

Рентгенографические параметры некоторых соединений пирофосфатов анилина и меди

№	Названия соединений Элементы кристаллич. Решетки пирофосфатов анилина и мели		C ₆ H ₅ NH ₂ · ·C ₆ H ₅ COOH	CuSO4 [.] ·2C6H5NH2	2C ₆ H ₅ NH ₂ · ·H4P2O7	Cu2P2O7 [.] ·2H2O	(NH4)4·P2O7	2,5Cu2P2O7(NH4)4 [.] .P2O717H2O	(NH4)2SO4
1	Молекулярный вес, а.е.м		215,24	345,87	364,24	336,88	341,21	161,03	131,9
2	Удельный вес, р, г/см ³		2,987	1,523	1,778	4,38	0,399	9,83	1,51
3	Удельный объем, Vy, см ³ /г		3,335	0,656	0,562	0,228	2,506	0,102	0,662
4	Молекулярный объем Vm, см ³ /моль		72,06	227,09	204,86	76,91	855,16	16,38	87,35
5	Значение позиционных координатов, в 10 ⁻⁶ см	a	6,4364	13,1106	10,3766	5,2699	9,8100	6,7050	5,4008
		в	3,8034	5,2400	5,3966	3,3845	5,5267	4,6490	5,3633
		с	5,5187	6,5170	7,5140	4,5298	6,3550	5,3833	4,5549
6	Соотношение значений позиционных координатов	c/ a	0,857	0,497	0,724	0,856	0,647	0,803	0,843
		с/в	1,451	0,497	1,392	1,338	1,149	1,158	0,849
7	Углы между гранями, в градусах	α	90	90	90	90	90	90	90
		β	62,15	57,2	52	80,24	82	74,24	80,48
		γ	90	90	90	90	90	90	90
8	Количество формульных единиц		29	34	41	17	29	227	15
9	Объем элементарной ячейки, V, 10 ⁻²⁴ см ³		357,29	376,84	339,9	336,6	341,21	161,03	131,9
10	Масса одной молекулы, m, 10 ⁻²⁹ г		35,65	57,36	56,37	55,84	22,59	26,27	14,48
11	Линейные размеры молекулы, L 10 ⁻⁸ см		1,528	1,791	1,817	1,813	1,312	2,789	1,297
12	Диаметры молекулы, D10 ⁻⁸ см		0,49	0,57	0,58	0,58	0,42	0,88	0,41
13	Количество молекул в элементарной ячейке, Z		3	1	7	1	6	6	9
14	Относительные ошибки, в%		0,04	0,01	0,04	0,001	0,01	0,02	0,003

Формы и виды пространственного изображения элементарной ячейки некоторых соединений пирофосфатов анилина и меди кристаллографической решетки в моноклинной системы:

- 1. $C_6H_5NH_2$ · C_6H_5COOH
- 2. $CuSO_4 \cdot 2C_6H_5NH_2$
- 3. 2C₆H₅NH₂·H₄P₂O₇
- 4. $Cu_2P_2O_7$ ·2H₂O
- 5. (NH₄)₄·P₂O₇
- 6. 2,5Cu₂P₂O₇(NH₄)₄·P₂O₇17H₂O
- 7. (NH₄)₂SO₄

Литература:

- 1. Акбаев А.А. Взаимодействие солей тяжелых металлов с азотосодержащимися соединениями и синтез физактивных веществ. Фрунзе Илим -1984 470 с.
- 2. Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М. Физматиз. -1961 863 с.
- Липсон Г., Стипл Г. Интерпретация порошковых рентгенограмм//Пер. с англ. Е. Н. Беловой и Г.П. Литвинской. Под ре. Академика Н.В. Белова. – М. – Мир – 1972 – 384 с.
- 4. Ito T.X-rau Studies in Polymorphism, maruren, Tokyo 1950.
- 5. Нудельман А. Расшифровка порошковых рентгенограмм методом переменного масштаба. М. Госгелогтехиздат 1962.
- 6. Абдыбалиев Д.А.. Такенеев К.Т., Касымалиев Б.К. Начертательная геометрия с основами инженерной графики. Б. 2013 42 с.
- 7. Мильбурн Г. Рентгеновская кристаллография. М. Мир 1975 484 с.
- Абдыбалиев Д.А., Ибраимова К.Б., Мураталиева А.Р. Изучение кристаллической структуры и строение фениланина и тиодифениланина сульфатом хлорида меди – Б. – Наука, новые технологии и инновации Кыргызстана, №4. – 2015. С. 15-16.

Рецензент: к.ф.-м.н. Байтереков А.Т.