Абдыбалиев Д.А., Абдыбалиев Т.Д., Кочоков С.К.

ИССЛЕДОВАНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ И СТРОЕНИЯ НЕКОТОРЫХ СОЕДИНЕНИЙ МАГНИЯ И КАЛЬЦИЯ С БИУРЕТОМ

Абдыбалиев Д.А., Абдыбалиев Т.Д., Кочоков С.К.

МАГНИЙ ЖАНА КАЛЬЦИЙДИН БИУРЕТ МЕНЕН БОЛГОН КОШУЛМАЛАРЫНЫН КРИСТАЛЛДЫК ТҮЗҮЛҮШ КУРАМЫН ОКУП ҮЙРӨНҮҮ

D.A. Abdybaliev, T.D. Abdybaliev, S.K. Kochokov

STUDY-CRYSTAL STRUCTURE AND BUILDING SOME CALCIUM AND MAGNUM COMPOUNDS WITH BURIED

УДК: 548:034.721:546.41:542.495.5(04)

В данной статье изучена кристаллическая структура и строение некоторых соединений магния и кальция с биуретом.

Установлены кристаллографические параметры элементарной ячейки кристаллической решетки: a, b, c, a, β , y, и вычислены объемы V.

Ключевые слова: кристалл, структура, строение, вычисление, магний, кальций.

Бул макалада магний менен кальцийдин нитраттар жана тиоциониттеринин биурет менен болгон татаал химиялык кошулмаларынын түзүлүш курамы жана жөнөкөй уячаларынын өлчөмдөрү: a, b, c, a, β, у жана көлөмү V аныкталган.

Негизги сөздөр: кристалл, түзүм, курулуш, вычисление, магний, кальций.

The paper studies crystal structure and building of same calcium and magnum compounds with buried.

Established crystallographic unit cell parameters – crystal latte: a, b, c, a, β, y and calculate the volume V.

Key words: crystal, structure, structure, computation, magnesium, calcium.

Жөнөкөй уячалардын мейкиндиктеги көрүнүш тузуму менен анын ичиндеги молекулаларынын саны эсептелип чыгарылган.

Изучен процесс химического взаимодействия соединения магния и кальция в системах, состоящих с биуретом в водных растворах классическим методом физико-химического анализа {1}. В результате с установлением концентрационных пределов равновесных растворов, получены новые комплексные соединения:

 $Ca(NO_3)_2 \cdot 4E$, $Ca(NO_3)_3 \cdot 4E$, $Ca(CNS)_2 \cdot 2E$,

Ca(CNS)₂ · 4Б, и Mg(NO₃)₃ · 2Б, · 2H₂O.

Целью настоящей статьи является исследование кристаллической структуры и строения соединений кальция и магния с биуретом.

Мелко растертые исследуемые образцы, специально приготовленные клеем набиваются в кюветы из органического стекла и устанавливают на рентгеновскую аппаратуру ДРОН-1,5 на медном излучении Ni-евым фильтром.

Съемка проводится при режиме работы:

 $V = 70\kappa B$, J = 40 mA.

Регистрация дифрактограммы производится с помощью самопишущего прибора ЭП-09 М на бумажной ленте. Расчет дифрактограммы производится измерительной линейкой. Интенсивность J/J₀ оценивается по сто или десяти бальной шкале, а расстояние между атомными плоскостями

 $d_{\alpha} / n b A$, измеряются с точностью порядка

±0,01A (2,3).

Таким образом, имеем относительные интенсивность дифракционных линий J/J_0 и межплоскостные расстояния $d_{\alpha}/n b \mathring{A}$. Именно эти величины являются объектом для дальнейшего изучения строения и структуры кальциевых и магниевых соединений.

Вычисление углов θ рекомендуется заменить вычислением значений $\sin^2 \theta [4,5,6]$ ибо $\sin^2 \theta_{nhl}$ связаны с индексами: h, k, l наиболее простой зависимостью для кубической, тетрагональной и гексагональной системы. Для этих систем вычисляется и сранивается с экспериментальными данными $\sin \theta_{nhl}$.

Предварительные расчеты показывают, что исследуемые соединения кальция и магния принадлежат к ромбической или моноклинной системе и они близки к ромбической, так как для моноклинной и особенно триклинной системе уравнения имеющей $\sin^2 \theta_{nhl}$, выраженные в параметрах прямой решетки, очень сложны, поэтому для индицирования моноклинной системе берем следующие формулы:

$$\sin^{2} \theta_{nhl} = \frac{\lambda^{2}}{4} \cdot \frac{\frac{h^{2}}{a^{2}} + \frac{t^{2}}{c^{2}} - \frac{2hl\cos\beta}{a\cdot c} + \frac{k^{2}}{b^{2}}}{\sin^{2}\beta}, (1)$$

где ребро «*b*» перпендикулярно плоскости, в которой лежат ребра, *a* и *c*, $a\beta$ – угол между, *a* и *c*.

Пользуясь этими уравнениями, можно сравнить экспериментальные вычисленные значения $\sin^2 \theta$, но эта процедура исключительно

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 4, 2015

И

трудоемка. Поэтому в качество примера к моноклинному кристаллу и отражениям от него, для которых l = 0 и берем выражения

$$\sin^2 \theta_{hko} = Ah^2 + Bk^2 \dots \tag{2}$$

где

$$A = \frac{\lambda^2}{4a^2} \cdot \sin^2 \beta = \sin^2 \theta_{100}$$

$$B = \frac{\lambda^2}{4\hat{a}^2} = \sin^2\theta_{010}$$

Аналогично $\sin^2 \theta_{okl} = Bk^2, +Cl^2 \dots,$ (3)

 λ^2

где C = $\frac{\lambda^2}{4c^2} \cdot \sin^2 \beta = \sin^2_{001}$

Из формулы (2) следует, что $\sin^2 \theta_{oko} = Bk^2$ и $Ah^2 = \sin^2 \theta_{h00}$, и поэтому $\sin^2 \theta_{hko} = \sin^2 \theta_{hoo} + \sin^2 \theta_{oko}$

Точно так же из (3) имеем

$$\sin^2 \theta_{akl} = \sin^2 \theta_{aka} + \sin^2 \theta_{aal}$$

Таким образом, используя приемы расшифровки рентгенограмм ромбических кристаллов, можно в моноклинных кристаллах, найти величины $\sin^2 \theta_{100}$, $\sin^2 \theta_{010}$ и $\sin^2 \theta_{001}$, а затем, используя уравнения (2) и (3) можно проиндифицировать рефлексы hko, и okl путем сравнения вычисленных И экспериментально полученных величин $\sin^2 \theta_{hk1}$, (4).

Параметр «b» определяется непосредственно из уравнения:

$$\sin^2 \theta_{010} = \frac{\lambda^2}{4b^2} \tag{4},$$

где λ – длина волны рентгеновского излучения.

Следовательно, выполненные расчеты показывают, что имеющие соединения кристаллизируются в моноклинной системе (таблица 1 и 2).

Определение кристаллограф	оических параметров	некоторых соединени	И
СаиМдсб	биуретом. табл. 1 и та	абл. 2.	

Nº	Название Ц в д соединений Х в 10		элемен- я́ ячей- А ³	Значение позиционных координат в А			Углы составляющие между гранями, а градусах			нество Льных ниц	atenb dipem- i name- a b %
		Молеі ная м кг/м	Объём тарноі ки	a	b	с	a	р	У	Колич форму еди	Относі ные по ностей рени
1.	Ca(N03)2*45	564,40	238,30	10,0481	3,5571	6,5527	90,00	91,00	90,00	57	0,08
2.	Ca(CNS)2*45	586,62	555,34	10,9432	6,4533	7,7078	90,00	87,00	90,00	55	0,06
3.	Ca(CNS)2*25	362,45	543,56	11,1696	7,5191	6,2061	90,00	91,00	90,00	31	0,07
4.	Mg(N03)3*25*2H20	452,52	2889,52	16,8600	9,7280	14,3500	90,00	103	90,00	37	0,02
5.	Ca(N0 ₃) ₃ *45	640,44	21,25	2,6346	2,5486	2,5779	90,00	91,00	90,00	61	0,065

Определение параметров элементарной ячейки кристаллической решетки некоторых соединений Са и Мд с биуретом

	Название соединений	мов ейки	c/a	c/b	Масса одной молекулы 10 ⁻²⁷ кг.	Количество атомов		лер -10 м	చ	em,	IЙ ЮЛЬ	2
Nº		Количество ато элементарной яч				кислорода	водорода	Линейный разл молекулы, в 10	Удельный ве в кг/м ³ р	Удельный объ в кг/м ³ р	Молекулярнь объём Vм, м/км	Диаметры молекулы в, 1
1.	$Ca(NO_3)_2 \cdot 4E$	6	0,652	1,842	9,359	20	20	2,08	2,368	0,422	238,3	0,66
2.	Ca(CNS)₂ · 4Б	6	0,704	1,194	9,729	8	20	2,15	1,056	0,947	555,51	0,68
3.	Ca(CNS) ₂ · 25	4	0,556	0,825	6,011	4	10	1,81	0,667	1,499	543,4	0,58
4.	Mg(N0 ₃) ₃ · 2Б· 2H20	10	0,851	1,475	7,504	8	14	1,965	0,2599	3,847	1741,13	0,82
5.	Ca(N03)3 · 4Б	6	0,978	1,011	10,621	20	20	3	-	-	-	0,955

НАУКА, НОВЫЕ ТЕХНОЛОГИИ И ИННОВАЦИИ КЫРГЫЗСТАНА № 4, 2015

Достоверность полученных результатов, можно убедиться сравнением вычисленных $\sin^2 \theta_{hk1}$, и экспериментальных данных $\sin^2 \theta_{hk1}$, а также $1/d^2_{hk1}$ (вычисленное) и $1/d^2_{hk1}$ (экспериментальное).

Вывод

1. Определены кристаллические параметры элементарной ячейки: a, b, c, α, β, γ и V.

2. Вычислены количество атомов, содержащихся в элементарной ячейке кристаллической рещетки, а также линейные размеры молекулы и их диаметры.

3. Результаты могут быть использованы как справочный материал для проведения практических занятий по физике твердого тела.

Литература:

 Акматова М.Р. Координационные соединения нитратов РЗЭ, Мg, Са с биуретом и их физико-химические свойства. дисс. к.хим. наук.-Бишкек - 1997. - 154 с.

- Абдыбалиев Д.А. Авто реферат. канд. хим. наук. Ташкент – 1991 г. – 26 с.
- Миркин Л.И. Рентгеноструктурный анализ. Получение и измерение рентгенограмм - М. -Наука- 1976. 8-10 с.
- Липсон Г., Стипл Г. Интерпретация порошковых рентгенограмм // Пер. с англ. Е.Н.Беловой и Г.П.Литвинской. Под редакцией академика Н.В.Белова – М. – 1972. – 384 с.
- Недома И. Расшифровка рентгенограмм порошков// Пер.с польск. Г.Н. Мехеда. Под.ред. Л.Н. Расторгуева – М. – Металлургия – 1975. 423 с.
- Хейкер Л.М. рентгеновская дифрактометрия монокристаллов/ Под. общ. ред. Н.И. Комяка – Л. – Машиностроние, выш.2 1973. – 236 с.
- Абдыбалиев Д.А. Геометрическая структура H2MoO4·2H2O·C6H5NH2. Изв.Вузов – Б. – 2009 – с 3-6.
- Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов// под. ред. Проф. Я.С. Усманского. Изд-во физмат. лит. – М. – 1961.-860 с.

Рецензент: к.т.н., профессор Авдубалиев А.А.