ФИЗИКА МАТЕМАТИКА ИЛИМДЕРИ ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ PHYSICO-MATHEMATICAL SCIENCE

Бийбосунова Г.И., Бийбосунов М.И.

К ВОПРОСУ ОБТЕКАНИЯ ВОГНУТОЙ ПОВЕРХНОСТИ ПОТОКОМ СЖИМАЕМОЙ ЖИДКОСТИ

Бийбосунова Г.И., Бийбосунов М.И.

КЫСЫЛГАН СУЮКТУК АГЫМЫНЫН КАЙКЫ БЕТ МЕНЕН ӨТҮҮ МАСЕЛЕСИНЕ

G.I. Biibosunova, M.I. Biibosunov

TO THE ISSUE OF FLOWING THE CONCAVE SURFACE BY THE STREAM OF COMPRESSIBLE FLUID

УЛК: 532.546

В статье формулируется краевая задача при обтекании вогнутой поверхности потоком сжимаемой жидкости. Получено частное решение уравнения пограничного слоя.

Ключевые слова: вихри Гертлера-Тейлора, сжимаемый пограничный слой.

Макалада кысылган суюктук агымынын кайкы бет менен агып өткөн учурдагы четки маселе так айтылат. Чек ара катмарынын теңдемесинин жеке чыгарылышы табылган.

Негизги сөздөр: чек ара катмары.

We formulate a boundary value problem in the flow around a concave surface flow of a compressible fluid. The particular solution of the boundary layer was obtained.

Key words: the vortices Gertler-Taylor, compressible boundary layer.

Проблема возникновения вихрей Гертлера-Тейлора в сжимаемых потоках привлекает в настоящее время большой интерес в связи с разработкой новых технологий. В статье сформулирована математическая модель, описывающая нелинейную фазу развития возмущений в сжимаемом пограничном слое в поле центробежных сил при больших, но докритических числах Рейнольдса и Гертлера. Эта модель предназначена для описания развития вихрей Гертлера-Тейлора и для возмущенных течений около локальных и периодических в трансверсальном направлении неровностей или других пространственных возмущенных течений.

Рассмотрим режим, соответствующий длинам волны вихрей Гертлера-Тейлора λ , сравнимые с толщиной пограничного слоя δ . В этом случае характерные размеры возмущенной области течения совпадают по порядку величины, тогда одинаковые порядки будут иметь и возмущенные величины вертикальной и трансверсальной скоростей $v \longrightarrow v$, что следует из уравнения неразрывности и принципа минимального вырождения.

Предположим, что вихри вызывают нелинейные изменения основного течения, тогда

Нелинейность, проявляющаяся трансверсальном направлении дает

При этом исследуются нелинейные процессы, проявляющиеся в течении с характерным масштабом в направлении координаты z равным λ , что определяет величину градиента давления в поперечном направлении:

$$\frac{\partial \mathbf{p}}{\partial \mathbf{y}} \sim \frac{\rho \mathbf{u}^2}{\mathbf{x}}$$
 (1.2)

НАУКА И НОВЫЕ ТЕХНОЛОГИИ № 2, 2015

Из уравнения неразрывности и оценок (1.1) - (1.3) можно найти продольный размер возмущенной области **1**

Для дальнейшего анализа важно оценить порядок отношения диффузионного и инерционного членов в уравнении продольного импульса:

$$\frac{\mu \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}}{\rho \mathbf{u} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}} \sim \mathbf{0}(\mathbf{e}^{\frac{1}{2}} \mathbf{z}^{\frac{1}{2}}) \to 0$$

Понятно, что в таких условиях не выполнено условие прилипания и поэтому необходимо ввести на дне основной области подслой с толщиной:

у~ 🛱 х - течение в котором будет описываться системой уравнений трехмерного пограничного слоя.

$$y \approx \lambda y_{\epsilon}$$

$$z \approx \lambda z_{\epsilon}$$

$$u(x,y,z,\epsilon) \approx u_{\epsilon}(x_{\alpha},y_{\alpha},z_{\alpha}) + \cdots$$

$$v(x,y,z,\epsilon) \approx v_{\epsilon}(x_{\alpha},y_{\alpha},z_{\alpha}) \cdot \lambda^{-1} \epsilon^{\frac{1}{2}} \lambda^{\frac{1}{2}} + \cdots$$

$$w(x,y,z,\epsilon) \approx w_{\epsilon}(x_{\alpha},y_{\alpha},z_{\alpha}) \cdot \epsilon^{\frac{1}{2}} \lambda^{\frac{1}{2}} + \cdots$$

$$\rho(x,y,z,\epsilon) \approx \rho_{\epsilon}(x_{\alpha},y_{\alpha},z_{\alpha}) + \cdots$$

$$H(x,y,z,\epsilon) \approx H_{\epsilon}(x_{\alpha},y_{\alpha},z_{\alpha}) + \cdots$$

$$P(\gamma \mu_{\alpha}^{2})^{-1} + \epsilon \nu \rho_{\epsilon}(x_{\alpha},y_{\alpha},z_{\alpha}) + \cdots$$

Подстановка этих разложений в систему уравнений Навье-Стокса и совершение предельного перехода при $\mathbf{Re} \to \boldsymbol{\omega}$, $\mathbf{Ge} \to \boldsymbol{\omega}$ приводят к модифицированной системе уравнений Эйлера для трехмерного возмущенного течения:

$$\begin{split} &\frac{\partial(\rho_{\alpha}u_{\alpha})}{\partial x_{\alpha}} + \frac{\partial(\rho_{\alpha}v_{\alpha})}{\partial y_{\alpha}} + \frac{\partial(\rho_{\alpha}w_{\alpha})}{\partial z_{\alpha}} = 0\\ &u_{\alpha}\frac{\partial u_{\alpha}}{\partial z_{\alpha}} + v_{\alpha}\frac{\partial u_{\alpha}}{\partial y_{\alpha}} + w_{\alpha}\frac{\partial u_{\alpha}}{\partial z_{\alpha}} = 0\\ &\beta[u_{\alpha}\frac{\partial v_{\alpha}}{\partial z_{\alpha}} + v_{\alpha}\frac{\partial v_{\alpha}}{\partial y_{\alpha}} + w_{\alpha}\frac{\partial v_{\alpha}}{\partial z_{\alpha}}] + u_{\alpha}^{2} + \frac{1}{\rho_{\alpha}}\frac{\partial\rho_{x}}{\partial y_{\alpha}} = 0\\ &[u_{\alpha}\frac{\partial w_{\alpha}}{\partial z_{\alpha}} + v_{\alpha}\frac{\partial w_{\alpha}}{\partial z_{\alpha}} + w_{\alpha}\frac{\partial w_{\alpha}}{\partial z_{\alpha}}] + \frac{1}{\rho_{\alpha}}\frac{\partial\rho_{x}}{\partial z_{\alpha}} = 0 \end{split}$$

НАУКА И НОВЫЕ ТЕХНОЛОГИИ № 2, 2015

$$\mathbf{u}_{\alpha} \frac{\partial \mathbf{H}_{\alpha}}{\partial \mathbf{x}_{\alpha}} + \mathbf{v}_{\alpha} \frac{\partial \mathbf{H}_{\alpha}}{\partial \mathbf{y}_{\alpha}} + \mathbf{w}_{\alpha} \frac{\partial \mathbf{H}_{\alpha}}{\partial \mathbf{z}_{\alpha}} = 0 \qquad \qquad \beta = \frac{\varepsilon^{2}}{\lambda^{2}}$$

Отличие системы уравнений (1.6) от обычной системы уравнений Эйлера состоит в наличии члена в уравнении для поперечного импульса, учитывающего влияние центробежных сил.

Другая особенность связана с отсутствием градиента давления в уравнении продольного импульса. Из второго уравнения системы (1.6) следует тогда сохранение продольной составляющей вектора скорости вдоль линии тока. Аналогичным первым интегралом обладает и уравнение для полной энтальпии. Для возмущений малой амплитуды решение системы уравнений (1.6) можно представить в виде:

$$\begin{split} \mathbf{u}(\mathbf{x}) &= \mathbf{u_0}(\mathbf{y_\alpha}) + \tau \mathbf{u_e}(\mathbf{y_\alpha}) \sin \mathbf{z_\alpha} \exp(\alpha \mathbf{x_\alpha}) + \cdots \\ \mathbf{v_e} &= \tau \mathbf{v_e}(\mathbf{y_\alpha}) \; \exp(\alpha \mathbf{x_e}) \sin \mathbf{z_\alpha} + \cdots \\ \mathbf{w_e} &= \tau \mathbf{w_e}(\mathbf{y_\alpha}) \; \exp(\alpha \mathbf{x_\alpha}) \cos \mathbf{z_\alpha} + \cdots \\ \mathbf{H_e} &= \mathbf{H_o}(\mathbf{y_\alpha}) \tau \; \mathbf{G_0}(\mathbf{y_\alpha}) \exp(\alpha \mathbf{x_\alpha}) \sin \mathbf{z_\alpha} + \cdots \\ \mathbf{\rho_e} &= \mathbf{r_0}(\mathbf{y_\alpha}) + \tau \; \mathbf{R_\alpha}(\mathbf{y_\alpha}) \exp(\alpha \mathbf{x_\alpha}) \sin \mathbf{z_\alpha} + \cdots \\ \mathbf{P_\alpha} &= \mathbf{P_0}(\mathbf{y_\alpha}) + \tau \; \mathbf{P_\alpha}(\mathbf{y_\alpha}) \exp(\alpha \mathbf{x_\alpha}) \sin \mathbf{z_\alpha} + \cdots \\ \mathbf{\tau} &\ll 1 \end{split}$$

Ограничиваясь нулевым и первым приближением из (1.6) и (1.7) можно получить систему обыкновенных дифференциальных уравнений вида:

$$\begin{split} \alpha \rho_{o} u_{\omega} + \alpha u_{\omega} R_{\omega} + \rho_{o} v_{\omega}' + v_{\omega} \rho_{o}' - \rho_{o} w_{\omega} &= 0 \\ \alpha u_{o} u_{\alpha} + v_{\alpha} u_{o}' &= 0 \\ \beta [\alpha u_{o} u_{\alpha} + 2 u_{o} u_{\alpha}] + \frac{1}{\rho_{o}} P_{\alpha} u_{o}' - \frac{R_{\alpha}}{\rho_{o}^{2}} \rho_{o}' &= 0 \\ \frac{1}{\rho_{o}} P_{o}' &= -u_{o}^{2} \\ \alpha u_{o} w_{\alpha} + \frac{R_{\alpha}}{\rho_{o}} &= 0 \\ \alpha u_{o} G_{\alpha} + v_{\alpha} H_{o}' &= 0 \\ H_{0} &= \frac{\gamma - 1}{\rho_{o} \mu_{o}^{2}} + \frac{u_{o}^{2}}{2} \\ G_{\alpha} &= -\left(1/\left(\frac{1}{\gamma} - 1\right) \mu_{o}^{2}\right) R_{\alpha} / \rho_{o}^{2} + u_{o} u_{\alpha} \\ \rho_{o} &= \mu_{o}^{2} \left(u_{o}^{2} \mu_{\infty}^{2}\right) \rho_{o} = \rho_{o}' v_{1} (\alpha u_{o}) \end{split}$$

$$(1.8)$$

Где () $'=\frac{\partial}{\partial y}$

НАУКА И НОВЫЕ ТЕХНОЛОГИИ № 2, 2015

Если ввести новую переменную $\mathbf{z} = \frac{\mathbf{q}}{\mathbf{q}}$, то тогда можно свести систему (1.8) к одному дифференциальному уравнению:

$$\mathbf{z}^{-} + 2\mathbf{z}' \left(\frac{\mu'_{0}}{\mu_{0}} \right) + \mathbf{z} \left(-\beta + 2 \left(\frac{\mu'_{0}}{\mu_{0} \alpha^{2}} \right) \right) = 0 \tag{1.10}$$

с граничными условиями

$$v_1(0) = 0;$$
 $v_1(\infty) = 0$ (1.11)
 $z(\infty) = 0,$ $z(0) = const.$

Это уравнение представляет собой задачу на собственные значения. Существует два пути решения уравнения (1.10) с граничными условиями (1.11): поиск собственных значений матрицы, получающейся при разностном представлении уравнения (1.10) второй путь, как результат решения дифференциального уравнения методом Рунте-Кутта.

На рис. 1 и 2, представлены профили скорости z для различных значений 🦸, 👢 , у.

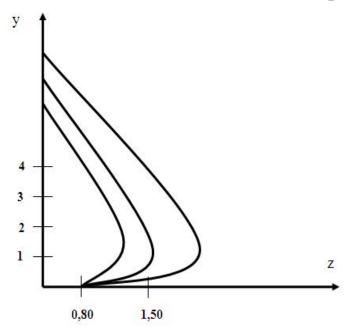


Рис. 1. График распределения скорости z при

$$\mu = 0.2$$
, $\mu = 2.5$, $\gamma = 1.8 \alpha = 15$, $\beta = 0.01$
 $\mu = 0.2$, $\mu = 0.6$, $\mu = 1.8$ $\alpha = 15$, $\beta = 0.01$
 $\mu = 0.2$, $\mu = 2.0$, $\mu = 1.8$ $\alpha = 3.5$, $\beta = 0.01$

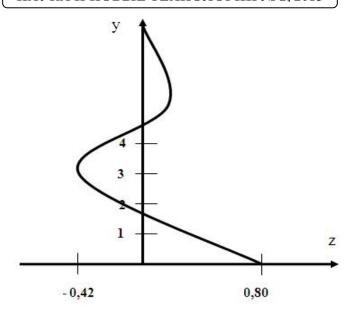


Рис. 2. График распределения скорости z при

$$\mu = 1.4$$
, $\beta = 1.4$, $\gamma = 1.8$ $\alpha = 15$, $\beta = 0.01$

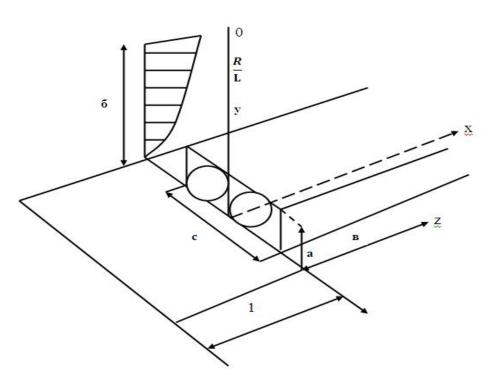


Рис. 3. Схема исследуемого течения

Литература:

- 1. Ершин Ш.А. Гидроаэродинамика. Алматы, 2013 г.
- 2. Ван-Дайк М. Методы возмущений в механике. М., изд-во Мир, 1967 г.
- 3. Peerhossaini H. On the subject of Gortler vortices. Lecture notes in Phisics, 1984, ed. S. Zaleski, pp. 376 384.

Рецензент: к.ф.-м.н., профессор Табышов Р.Т.