Чунгулова Т.К.

АНАЛИЗ МИКРО И МАКРОЭЛЕМЕНТОВ В РЕПЕЛЛЕНТЕ ДЛЯ МУРАВЬЕВ И В ЛЕКАРСТВЕННЫХ ТРАВАХ, ИСПОЛЬЗОВАННЫХ ДЛЯ ЕГО ПОЛУЧЕНИЯ

T.K. Chungulova

ANALYSES OF MICRO AND MACRO ELEMENTS IN REPELLENTAND IN THE OFFICINAL HERBS USED FOR IN'S OBTAIN

УДК: 577.17048 (575.2) (04)

Проведен сравнительный анализ содержания микрои махроэлементов в лекарственных травах, а также врепеленте для муравьев, приготовленного из вытяжек этих трав.

Кумурска репеллентиндеги жана аны алууга колдонулаары чөптөрдөгү микро- жана макро- элементтердин камтылышы салыштырмалуу анализденген.

It was carry out of the comparative analyses of the content of micro- and macro elements in officinal herbs and in the repellent, obtained from these herbs.

В последнее время наметилась тенденция, что одним из перспективных направлений получения новых лекарственных препаратов для нужд медицины, а также для ветеринарных целей является использование растительного сырья. Чаще всего, препараты, полученные из растений, обладают меньшей экологической опасностью наряду с высокой активностью по сравнению с синтетическими химиическими средствами. Для нас представляло интерес разработать композит из вытяжек лекарственных трав, который обладал бы репеллентным свойством против муравьев, которые также наносят вред пчеловодству наряду с другими заболеваниями пчел [1-3].

Нами для этой цели использованы лекарственные травы астрагал Тибетский, полынь горькая, тысячелистник таволголистный, а также рассада томата и незрелые плоды ореха грецкого. Препарат был приготовлен путем подбора оптимального соотношения вытяжек, полученных из этих трав. Предварительные испытания полученного композита на муравьях показало хорошие результаты. Известно, что в состав трав могут входить различные макро- и микроэлементы, которые могут попасть в препарат при экстракции из них активных соединений. В связи с этим указанные лекарственные травы проанализированы нами на предмет содержания этих элементов в составе трав. Особое внимание было уделено содержанию тяжелых эле-

ментов, которые зачастую обладают повышенной токсичностью.

Известно, что тяжелые металлы поступают в растение преимущественно через корневую систему из почвы, в меньшей степени - через листья. Скоро-сть поглощения растением металлов зависит от рН почвенного раствора, содержания органических веществ в почве и концентрации других ионов.

Прежде всего, представляют интерес те металлы, которые наиболее широко и в значительных объемах используют в производственной деятельности человека и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относятся такие элементы как свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьма, ванадий, марганец, хром, молибден и мышьяк [3-5].

Химический состав растений, как известно, отражает элементный состав почв. Поэтому избыточное накопление ТМ растениями обусловлено, прежде всего, их высокими концентрациями в почвах. В своей жизнедеятельности растения контактируют только с доступными формами ТМ, количество которых, в свою очередь, тесно связано с буферностью почв [6].

Использованные нами лекарственные травы астрагал Тибетский, полынь горькая, тысячелистник таволголистный были собраны в ущелье Чуйской области, далеко от проезжей части дорог. Они проанализированы нами на содержание 44 микро- и макроэлементов.

Анализ содержания элементов в образцах трав определялся методом ДФС-8 (дифракционный спектрограф) с дифракционной решеткой 600 штрихов на мм и фотографической регистрацией спектра. Полученные данные приведены в таблице 1.

Таблица 1.

Содержание (в мг/кг) микро- и макро- элементов в стеблях томата, незрелых грецких орехах, астрагале Тибетском, полыни горькой, тысячелистнике таволголистиом и чабреце, произрастающих в Чуйской долине Кыргызстана.

г/кг	SiO ₂	Al ₂ O ₃	MgO	CaO	Fe ₂ O ₃	Na ₂ O	K ₂ O	
Стебли томата	300	70	30	>120	50	40	40	
Незрелый грецкий орех	12	30	70	>120	3	20	120	
Астрагал Тибетский	500	90	>120	>120	20	20	>120	
Полынь горькая	90	30	>120	90	30	15	>120	
Тысячелистник таволголистный	150	30	>120	70	30	15	>120	
мг/кг	Мп	Ni	Co	Ti	V	Cr	Mo	
Стебли томата	300	40	<0,3	7000	50	90	50	
Незрелый грецкий орех	150	30	<0,3	3000	15	20	<0,15	
Астрагал Тибетский	63	8,1	0,27	360	6,3	2,7	0,36	
Полынь горькая	100,0	1,0	<0,15	100,0	1,5	1,5	2,0	
Тысячелистник таволголистный	105,0	3,5	<0,21	210,0	2,1	1,4	0,28	
мг/кг	W	Zr	Nb	Cu	Pb	Ag	Sb	
Стебли томата	<0,3	300	<1,2	120	150	0,9	<0,5	
Незрелый грецкий орех	<0,3	40	<1,2	50	40	0,3	<0,5	
Астрагал Тибетский	<2,7	13,5	1,1	6,3	1,8	<0,0 27	<4,5	
Полынь горькая	<1,5	2,5	<0,6	6,0	1,5	0,01 5	<2,5	
Тысячелистник таволголистный	<2,1	4,9	1,4	10,5	0,84	0,02 1	<3,5	
мг/кг	Bi	As	Zn	Cd	Sn	Ge	In	Ga
Стебли томата	<0,2	<3	0,9	<0,3	20	<0,1	<0,5	15
Незрелый грецкий орех	<0,2	<3	<0,3	<0,3	<0,15	<0,1	<0,5	3
Астрагал Тибетский	<0,18	<27,0	<2,7	<2,7	<0,135	<0,108	0,35	0,35
Полынь горькая	<0,1	<15,0	10, 0	<1,5	<0,075	<0,06	0,25	0,25
Тысячелистник таволголистный	<0,14	<21,0	3.5	<2.1	< 0.105	<0.084	0.35	0.28

продолжение табл. 1.

мг/кг	Yt	Y	La	Ce	P	Be	Sr	Ba	Li	Se
Стебли томата	3	50	<1,2	<0,3	5000	<2	900	700	<3	20
Незрелый грецкий орех	<0,3	15	<1,2	<0,3	7000	<2	2000	400	<3	<2
Астрагал Тибетский	-	0,84	8,4	21	700	0,21	108,0	180,0	<2,7	<18,0
Полынь горькая	-	0,6	6	15	500	0,1	20,0	10,0	<1,5	<10,0
Тысячелистник таволголистный	-	0,84	8,4	21	700	0,21	21,0	14,0	<2,1	<14,0

продолжение табл. 1.

мг/кг	Hf	Ta	Th	Hg	Pt	Au
Стебли томата	<1,2	-	<1,2	<0,5	<1,2	<0,5
Незрелый грецкий орех	<1,2	1	<1,2	<0,5	<1,2	<0,5
Астрагал Тибетский	<108,0	<108,0	10,8	0,45	1,08	0,45
Полынь горькая	<60,0	<60,0	6,0	0,25	0,6	0,25
Тысячелистник таволголистный	<84,0	<84,0	8,4	0,35	0,84	0,35

Согласно литературным данным [7] в составе полыни горькой в надземной части содержатся макроэлементы (мг/г): K - 35,10, Ca - 10,20, $M\pi$ - 2,00, Pe - 0,20; микроэлементы (мг/кг): Mg - 0,14, Cu - 0,48, Zn - 0,62, Co - 0,12, Mo - 4,00, Cr - 0,02, Al - 0,07,Se - 5,90, Ni-0,34,Sr - 0,13, Pb - 0,06, Br - 98,70, B - 88,80. Концентрирует Mo, Se, Br.

В составе тысячелистника обыкновенного [8] в соцветиях содержатся: макроэлементы (мг/г): К - 30,70, Ca -10,90, Mn- 2,60, Fe - 0,20; микроэлементы (мг/кг): Mg - 0,07, Cu - 0,68,Zn - 0,14, Mo - 5,60, Cr - 0,02, Al - 0,03, Se - 0,80, Ni - 0,22, Sr - 0,04, Pb - 0,03. В -39,60. Концентрирует Мо, Cu. В надземной части содержатся: макроэлементы (мг/г): К - 35,90, Ca -

11,80, Mn - 2,60, Fe - 0,20; микроэлементы (мг/кг): Mg - 0,09, Cu - 0,74, Zn - 0,68, Co -0,13, Mo - 3,20, Cr - 0,02, Al - 0,04, V - 0,02, Se - 6,25, Ni -0,20, Sr - 0,13, Pb - 0,03,1 - 0,05. B - 44,40. Концентрирует Мо, Cu, Zn, Se.

В составе астрагала (Astragalus falcatus Lam.) [9] в надземной части содержится: зола - 5,85%; макроэлементы (мг/г): K- 16,10, Ca -18,80, Mg-4,00, Fe-0,14; микроэлементы (мг/кг): Mn - 0,25, Cu - 0,20, Zn - 0,20, Co - 0,13, Cr - 0,004, Al - 0,06, Ba - 0,73, Se - 5,63, Ni - 0,09, Sr -1,61, Pb - 0,07,1 - 0,06. В -11,00. Концентрирует Sr, Se, Ba.

Анализ литературы показал, что данные, касающиеся содержания изученных элементов в стеблях томата и плодах зеленого ореха практически отсутствуют.

Следует отметить также, что наименее изученными в списке исследованных нами трав, являются астрагалы. Хотя астрагалы представляют большой интерес с той точки зрения, что они относятся к немногочисленным растениям, накапливающим селен из почвы, причем селен может содержаться в них в органической форме.

Для других растений, как видно из приведенных данных в таблице 1, содержание микро- и макро- элементов в лекарственных травах проанали-

зированных нами и сравнение их с литературными данными очень сильно отличаются. Это объясняется тем, что содержание элементов в растениях зависят от многих факторов, а именно, от местности, где они произрастают, на каких почвах, вдали или вблизи от промышленных объектов и т.д. К сожалению, в использованных нами литературных источниках данные о месте сбора растений не приводятся. Кроме того, анализ литературы показал, что для лекарственных трав отсутствуют данные по ПДК тяжелых металлов, не говоря уже о других элементах. Поэтому мы использовали, хотя бы для приблизительной оценки, данные о ПДК для овощных культур, которые используются непосредственно в пищу. Как показывает сравнение ПДК элементов (Cr, Ni, Cu, Zn, Cd, Hg, Pb, Sb) в овощах и фруктах, и содержание этих элементов в изученных нами травах, отличаются на один, а то на два порядка. Возможно, это объясняется завышенным требованием к продуктам питания, которые потребляются в большом количестве за один прием, каковыми не являются лекарственные травы.

Для сравнения приведем предельно допустимые концентрации (ПДК) тяжелых металлов в пищевом сырье растительного происхождения (мг/кг), таких как капуста, и др. овощи [10].

ПДК	Хром	Никель	Медь	Цинк	Кадмий	Ртуть	Свинец	Сурьма
$M\Gamma/K\Gamma$	0,2	0,5	10,0	10,0	0,03	0,03	0,5	0,1

Для нас представляло интерес исследовать содержание этих элементов в приготовленном нами репелленте, который непосредственно был испытан на муравьях. Для проведения анализа нами композит репеллента, состоящий из водных вытяжек вышеприведенных лекарственных трав, был освобожден от водной части до сухого состояния и проанализирован на содержание этих же микро- и макро элементов. Эти данные приведены в таблице 2.

Таблица 2.

Содержание (в мг/кг) микро- и макро- элементов в репелленте

Репеллент, мг/кг		Репеллент,		Репелле	нт,	Репеллент,	
		мг/кг		мг/кг		$M\Gamma/K\Gamma$	
SiO 2, Γ/ΚΓ	20	V 5		As	100	P	400 0
Al₂O₃ , Γ/κΓ	20	Cr	20	Zn	12	Be	1
MgO, г/кг	>50	Mo	0,5	Cd	12	Sr	150
СаО , г/кг	40	W	12	Sn	0,5	Ba	90
Fe ₂ O ₃ , г/кг	1	Zr	10	Ge	0,5	Li	12
Na₂O, г/кг	>50	Nb	5	In	2	Sc	10
К2О, г/кг	50	Cu	20	Ga	1,2	Hf	20
Мп	840	РЬ	200	Yb	1,2	Th	20
Ni	13	Ag	0,12	Y	5	Hg	2
Со	1	Sb	20	La	10	Pt	2
Ti	30	Bi	1	Ce	100	Au	2

Из результатов таблицы 2 можно видеть, что в целом, препарат не обременен содержанием токсичных элементов, кроме свинца, содержание которого составляет 200 мг/кг. Этот результат кажется странным, если учесть результаты таблицы 1, где содержание этого элемента составляет (мг/кг): в стеблях томата - 150, в незрелом грецком орехе - 40, астрагале Тибетском - 1,8, полыни горькой - 1,5, в

тысячелистнике таволголистном - 0.8. Содержание других опасных элементов составляет (мг/кг): Cd <12, Hg <2, Zn<12, менее опасных: Co <1, Ni =13, Cu = 20, Mo = 0,5,Sb <20, Cr = 20, Ba = 90, V<5, W< 12, Mn = 840, Sr= 150.

Содержание стронция в препарате 150 мг/кг, однако известно, что соли и соединения стронция малотоксичны. Не следует путать действие на орга-

низм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция, которые получаются при ядерных взрывах [11].

Как видно из таблицы 2, содержание в препарате бария равно 90 мг/кг. Барий относится к токсичным ультрамикроэлементам, однако, токсическая доза для человека: 200 мг, а летальная доза- 3,7 г [12].

□аким образом, содержание микро- и макроэлементов в предлагаемом нами репелленте, особенно, тяжелых и токсичных элементов, не представляет угрозы для здоровья и окружающей среды при его использовании в пчеловодстве для отпугивания муравьев.

Литература:

1. А.П.Белоногов, Н.К.Исакова, С.В.Новичихин. "Пчеловодство", №5,2003.

- 2. О.Ф.Грибов, А.М.Смирнов, Е.Т.Попов. Болезни и вредители медоносных пчел. Справочник. М., ВО "Агропромиздат", 1987, с. 136.
- А.Б.Костюхин, Б.А.Смирнов и др. "Вопросы и ответы". Журнал "Пчеловодство" № 2 за 1987 г., с. 30-32.
- 4. В. Б. Ильин Тяжёлые металлы в системе почва растение. Новосибирск: Наука, 1991.
- 5. Э.Н.Левина. Общая токсикология металлов. -М., 1972.
- 6. С.Бортитц. Влияние загрязнений воздуха на растительность. Причины, воздействие. Ответные меры.
- 7. http://lingvistu.com/elr/page/polyin gorkaya.251.
- 8. http://www.edudic.ru/347/.
- http://cureplant.ru/index.php/zhelchegonnie/111astragalserpovidnii.
- "Токсичность тяжелых металлов в с.х. рас-тениях".
 Справочник. "Предельно допустимые концентрации (ПДК) тяжелых металлов в сырье растительного происхождения и готовой пищевой продукции".
- 11. http://www.xumuк.ru/eпcyklopedia/2/4478. html.
- 12. http://www.micrielements.ru/Ba.

Рецензент: к.х.н. Шыйтыева Н.