НАУКА И НОВЫЕ ТЕХНОЛОГИИ, № 7, 2010

Мукашулы А., Болатбаева Т.А.

СОЗДАНИЕ ДЕМПФИРУЮЩИХ СПЛАВОВ, ЛЕГИРОВАННЫХ ЛАНТАНОМ И КАЛЬЦИЕМ

A. Mukashuly, T.A. Bolatbaeva

CREATING DAMPING-ALLOYED LANTHANUM AND CALCIUM

УДК: 628.517.2:669 (043)

Исследованы стали, используемые для изготовления зубчатых колес. Получены характеристики звукоизлучения, прочности, демпфирования. Разработаны демпфирующие сплавы, легированные кальцием и лантаном

Became investigated, used for manufacturing of cogwheels. Characteristics of sound generation, durability, a damping are received. The alloys alloyed by calcium and a lanthanum are developed.

Шум в жизнедеятельности человека оказывает зачастую негативную роль, ухудшая его здоровье, мешая его деятельности.

Звукоизоляция и звукопоглощение получили широкое распространение в практике борьбы с шумом и вибрацией, но основным недостатком этих методов является увеличение габаритов машин, что затрудняет доступ к узлам изолирующего объекта, нарушает условие компактности. Повышение жесткости приводит к нежелательному увеличению массы, и в первую очередь металлоемкости оборудования. Специальные демпфирующие устройства, как правило, усложняют конструкцию машины и существенно повышают затраты на эксплуатацию оборудования. Рациональное размещение шумного оборудования может привести к значительному снижению шума, но вместе с тем для действующих цехов этот метод нерационален, так как требует значительных капиталовложений для переустройства производственных участков.

Использование неметаллических материалов (резины, пластмасс, полиэтилена, полиуретана) для снижения шума в источнике возникновения затруднено ввиду их низких прочностных свойств, особенно при высоких температурах и в условиях воздействия агрессивных сред.

Одним из методов борьбы с возможными вредными последствиями колебаний и вибраций является применение для изготовления деталей механизмов сплавов, обладающих повышенной способностью рассеивать энергию колебаний, т.е. сплавов с высокой демпфирующей способностью.

Следует учесть, что применение сложнолегированных сплавов высокого демпфирования на основе Мп, Мg, Сu и других элементов ограничено ввиду низкой их стойкости в отношении интенсивного износа при высоких температурах и из-за высокой стоимости. Особенно неприемлемо применение таких сплавов в металлургии и тяжелом машиностроении. Поэтому актуальной является разработка сплавов на основе железа, обладающих высокой способностью рассеивать энергию звуковых колебаний

Установлено, что при разработке сплавов высокого демпфирования следует добиваться получения устойчивой в условиях эксплуатации метастабильной структуры, характеризующейся большими внутренними напряжениями. Этого можно добиться подбором определенного сочетания элементов в сплаве и определенным для каждого сплава режимом термической обработки, что в совокупности обеспечит повышенные демпфирующие свойства. Исходя из этого, ряд авторов сделали попытку классифицировать сплавы по признакам основного механизма рассеяния звуковой энергии и их химическому составу.

В качестве объекта рассматривали как стандартные сплавы (стали для отливок), так и вновь выплавленные. Назначение этих сталей приведены в таблице 1. В таблице 2 представлен химический состав исследованных сталей. Исследовали акустические (уровень звука, уровень звукового давления) и вибрационные (уровень виброускорения, общий уровень виброускорения) характеристики сплавов.

Для исследования были выбраны стандартные легированные стали для отливок марок 35ГЛ, 30ГСЛ, 40ХЛ, 08ГДНФЛ и выплавленные сплавы 1, 2 и 3, легированные хромом, никелем, ванадием, лантаном, марганцем, кальцием, механические характеристики которых приведены в таблице 3.

Одной из поставленных задач данной работы является разработка новых демпфирующих металлических материалов на основе железа. В связи с этим путем добавления легирующих элементов в химический состав стандартных марок сталей были получены новые сплавы с повышенными демпфирующими свойствами. Принципы легирования сплавов в работе основаны на изучении диаграмм состояния Fe-C, Fe-Si, Fe-Mn, Fe-Cr, Fe-La, Fe-Ca, Fe-V, Fe-Ni. Диаграммы состояния определяют в условиях равновесия фазовый состав сплава в зависимости от температуры и концентрации компонентов и позволяют качественно характеризовать многие физико-химические, механические и технологические свойства сплавов.

В качестве объекта исследования выбраны стали для отливок, так как почти 70% составляют литые стали из всего объема металлопродукции.

НАУКА И НОВЫЕ ТЕХНОЛОГИИ, № 7, 2010

В качестве основных металлических шихтовых материалов использовали армко-железо, ферросплавы и металлолом.

Литье производилось в кокиль. Литье в кокиль по сравнению с песчаной формой имеет ряд преимуществ: относительную долговечность формы и ускоренное охлаждение в ней отливки, резкое сокращение или практически полное исключение расхода формовочных материалов; увеличение съема с формовочной площадки в 2-6 раз, повышение производительности труда в 1,5-6 раза, уменьшение шероховатости поверхности, повышение точности отливок, увеличение плотности отливок, уменьшение размеров прибылей и часто даже их устранения.

Плавку производили в индукционной печи.

Таблица 1. Назначение и общая характеристика стандартных сталей [1].

Сталь	Назначение
35ГЛ	Диски, звездочки, зубчатые венцы, шкивы, крестовины, траверсы, ступицы, вилки, зубчатые колеса, валы, кулачковые муфты, крышки подшипников, цапфы, ковши драглайнов, детали экскаваторов, щеки дробилок, бандажи бегунов и другие детали дробильно-размольного оборудования.
30ГСЛ	Рычаги, фланцы, сектора, венцы зубчатые, ролики-обойма, колеса ходовые и др.
40ХЛ	Фасонные отливки, отливаемые методом точного литья, зубчатые колеса, бандажи, отливки небольших сечений и другие детали общего машиностроения, к которым предъявляются требования повышенной твердости.
08ГДНФЛ	Различные детали для судостроения. Сталь 08ГДНФЛ применяется для литых деталей, работающих при температуре до 60°С.

Таблица 2

Химический состав исследуемых сталей.

Марка	Химический состав, % вес										
сплавов,	С	Si	Mn	Cr	La	Ca	Cu	S	P	Ni	V
образцов	C	51	IVIII	CI	La	Ca	Cu	не более			
35ГЛ	0,30-0,40	0,2-0,4	1,2-1,6	≤0,3	-	-	≤0,3	0,04	0,04	≤0,3	-
30ГСЛ	0,25-0,35	0,6-0,8	1,1-1,4	≤0,3	-	-	≤0,3	0,04	0,04	≤0,3	-
40ХЛ	0,35-0,45	0,2-0,4	0,4-0,9	0,8-1,0	-	-	≤0,3	0,04	0,04	≤0,3	-
08ГДНФЛ	0,10	0,15-0,4	0,6-1,0	≤0,3	-	-	0,8-1,2	0,035	0,035	1,15-1,55	0,06-0,15
1	0,3	0,4	0,8	1,0	0,12	0,15	≤0,3	0,045	0,04	1,2	0,25
2	0,4	0,5	0,75	1,0	0,15	0,18	≤0,3	0,045	0,04	0,3	-
3	0,5	0,45	1,0	1,0	0,21	0,20	≤0,3	0,045	0,04	0,3	-

 Таблица 3.

 Механические свойства исследуемых сталей.

Марка сталей	$\sigma_{\scriptscriptstyle B}$	Ударная вязкость КСU, Дж/см ²		ψ % не мен	σ _т , МПа
35ГЛ	550	30	12	20	300
30ГСЛ	600	30	14	25	350
40ХЛ	650	40	12	25	500
08ГДНФЛ	450	50	18	30	350
1	500	30	13	25	300
2	450	35	14	30	350
3	600	40	12	35	320

Исследование акустических и демпфирующих свойств выбранных сталей позволило выявить сле-

дующее: опытные сплавы 1 и 2, легированные лантаном и кальцием, характеризуются уровнем звука при соударении 89дБА и 92 дБА соответственно. А уровни звука стандартных сталей оцениваются значениями (104-108) дБА.

Заключение: исследованы стали, используемые для изготовления зубчатых колес. Получены характеристики звукоизлучения, прочности, демпфирования. Разработаны демпфирующие сплавы, легированные кальцием и лантаном.

Литература:

1. Журавлев В.Н., Николаева О.И. Машиностроительные стали. Справочник. – М.: Машиностроение, 1981. – 391 с.

Рецензент: д.т.н. Осмонов К.А.

79