Сыдыков Ж.Д.

КИСЛОТНАЯ КОНВЕРСИЯ ТЕХНОГЕННОГО КАРБОНАТСОДЕРЖАЩЕГО СЫРЬЯ И ОПРЕДЕЛЕНИЯ РАВНОВЕСНЫХ СОСТАВОВ ГАЗОВОЙ И КОНДЕНСИРОВАННЫХ ФАЗ

УДК: 66.063.61(575.2)(04)

Определены равновесные составы и концентрации компонентов, образующихся в системах $CaCO_3$ - $HC\ell$ и $CaCO_3$ - H_2SO_4 при P=0,1 $M\Pi$ a, T=298-303 K, и на их основе приведены технические характеристики и схема установки для получения диоксида углерода.

Вторичные ресурсы отдельных производств во многих случаях являются кондиционными органическими и минеральными материалами для получения диоксида углерода, но тем не менее они находятся в невостребованном состоянии, соответственно оказывают техногенную нагрузку на окружающую среду, особенно пустые породы горнотехнических работ. В большинстве случаев к ним относятся вскрышные карбонат и сульфидсодержащие твердые отходы.

Карбонатсодержащие твердые отходы в основном образуются в процессах камнеобработки, где не задействовано многотоннажные мелочи кальцита и доломита. С учетом изложенного положения в данной статье рассмотрены физико-химические и термодинамические аспекты кислотной конверсии минерального техногенного сырья с целью получения сварочного диоксида углерода. Изучение данной проблемы позволяют решить две фундаментально-прикладные задачи: определение равновесных составов и свойств системы $CaCO_3$ -HC ℓ , $CaCO_3$ -H $_2SO_4$ при P=0,1 МПа, T=298-303 K [1]; осуществление деструкции $CaCO_3$ с целью получения CO_2 для сварочных работ и лимитирования выброса CO_2 в окружающую среду .

В связи с этим равновесные составы и концентрации компонентов, образующихся при кислотной конверсии CaCO₃ приведены в табл.1.

Таблица 1

Равновесные составы и концентрации компонентов, образующихся при кислотной конверсии ($HC\ell$, H_2SO_4) техногенного карбонатсодержащего сырья ($CaCO_3$) при P=0,1 МПа, T=298-303

К.<u>Исходные составы:</u> CaCO₃-HCl (1:2), моль/кг: Ca-3,33; C-3,33; O-9,991; H-18,284; Cl-18,284. CaCO₃-H₂SO₄ (1:3), моль/кг: Ca-2,498; C-2,498; O-8,083; H-15,295; S-7,647

	Равновесные концентрации компонентов, моль/кг					
Составы компонентов			Темпера	тура, К		
системы	298	299	300	301	302	303
CaCO ₃ -HCl (1:2):						
$\overline{\mathrm{H}_2}$	0,2894E-5	_	_	_	_	_
CO ₂	3,3304	3,3304	3,3304	3,3304	3,3304	3,3304
CO	0,2766E-10	_	_	_	_	_
$C\ell_2$	_	0,2384E-6	_	_	_	_
НСℓ	11,624	11,624	11,624	11,624	11,624	11,624
CH ₄	0,4616E-5	_	_	_	_	_
CaCℓ ₂ (κ)	3,3304	3,3304	3,3304	3,3304	3,3304	3,3304
H ₂ O	3,3304	3,3304	3,3304	3,3304	3,3304	3,3304
CaCO ₃ -H ₂ SO ₄ (1:3)						
$\overline{\mathrm{CO}_2}$	2,4978	2,4978	2,4978	2,4978	2,4978	2,4978
SO_2	0,2786E-4	0,2384E-6	0,2384E-6	0,2384E-6	0,2384E-6	0,2384E-6
SO_3	0,1981E-7	0,2252E-7	0,2558E-7	0,2558E-7	0,2558E-7	0,2558E-7
H ₂ SO ₄	5,1495	5,1496	5,1496	5,1496	5,1496	5,1496
H ₂ O	2,4978	2,4978	2,4978	2,4978	2,4978	2,4978
CaSO ₄ (ĸ)	2,4978	2,4978	2,4978	2,4978	2,4978	2,4978

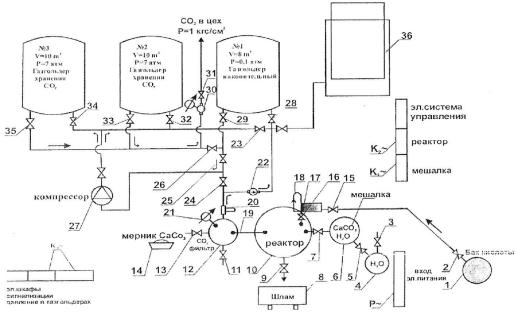
Из табл.1 видно, что при кислотной конверсии карбонатсодержащего техногенного сырья в равновесных условиях в незначительных количествах могут быть образованы такие компоненты, как H_2 , CO, $C\ell_2$, CH_4 в системе $CaCO_3$ - $HC\ell$, а SO_2 , SO_3 в системе $CaCO_3$ - H_2SO_4 . Поскольку концентрации указанных компонентов в системах составляют в пределах 10^{-4} – 10^{-10} моль/кг, поэтому в дальнейших расчетах рабочих концентраций они не учитывались. Таким образом, образование основных продуктов реакции, в частности: $CaC\ell_2(\kappa)$, $CaSO_4(\kappa)$, H_2O и CO_2 подтверждаются равновесными данными, приведенными в табл. 1.

Изучены свойств системы $CaCO_3$ - $HC\ell$ и $CaCO_3$ - H_2SO_4 на основе определения их термодинамических характеристик при P=1 МПа, T=298-303 К (табл. 2 и 3).

Таблица 2 Изменение свойств системы: CaCO₃ - HCl, при P=0,1 МПа, T=298-303 К

Наименование	CaC	СО3-НСℓ (1:2), м	оль/кг: Са-3,33;	C-3,33; O-9,991;	H-18,284; Cℓ-1	8,284
параметров	Температура, К					
	298	299	300	301	302	303
V·10 ² , м ³ /кг	45,3029	45,455	45,607	45,759	45,911	46,0631
S, кДж/(кг·К)	4,01219	4,01492	4,01765	4,02037	4,02308	4,02579
І, кДж/кг	-5839,26	-5838,44	-5837,63	-5836,81	-5835,99	-5835,17
U, кДж/кг	-5839,24	-5838,57	-5837,91	-5837,24	-5836,58	-5835,91
μ, моль/кг	21,6148	21,6148	21,6148	21,6148	21,6148	21,6148
С'р·10 ⁴ , кДж/(кг·К)	8170,61	8172,38	8174,55	8176,72	8178,9	8181,08
MMq, г/моль	34,4761	34,4761	34,4761	34,4761	34,4761	34,4761
Rq, Дж/(кг·К)	241,163	241,163	241,163	241,163	241,163	241,163
Ср'q·10 ⁴ ,кДж/(кг·К)	9112,95	9114,35	9116,13	9117,93	9119,74	9121,57
Mu·10 ⁵ , Па·с	1,08	1,08	1,09	1,09	1,1	1,1
$Lt \cdot 10^5$, $BT/(M \cdot K)$	1461,77	1467,89	1474,07	1480,25	1486,44	1492,63
$Lt' \cdot 10^5$, $B_T/(M \cdot K)$	1462,56	1467,89	1474,07	1480,25	1486,44	1492,63
Pr'·10 ³	673,124	673,496	673,51	673,524	673,539	673,553
$z \cdot 10^3$	369,624	369,624	369,624	368,624	369,624	369,624

Таблица 3 Изменение свойств системы: CaCO₃ - H₂SO₄, при P=0,1 МПа, T=298-303 К


Наименование	CaCC	O ₃ - H ₂ SO ₄ (1:2), M	юль/кг: Ca-2,49	8; C-2,498; O-38	,083; H-15,295; S	-7,647
параметров	Температура, К					
	298	299	300	301	302	303
V·10 ² , м ³ /кг	25,1364	25,2207	25,305	25,3894	25,4737	25,5581
S, кДж/(кг·К)	2,89901	2,90187	2,90475	2,90761	2,91048	2,91334
I, кДж/кг	-8943,93	-8943,07	-8942,21	-8941,34	-8940,48	-8939,61
U, кДж/кг	-8943,92	-8943,14	-8942,36	-8941,58	-8940,8	-8940,02
μ, моль/кг	12,6429	12,6429	12,6429	12,6429	12,6429	12,6429
С′р·10⁴, кДж/(кг·К)	8577,27	8592,75	8610,85	8628,81	8646,64	8664,34
MMq, г/моль	65,0517	65,052	65,052	65,052	65,0521127	65,052
Rq, Дж/(кг·К)	127,812	127,811	127,811	127,811	,811	127,811
Ср'q·10 ⁴ ,кДж/(кг·К)	9224,79	9240,69	9259,28	9277,73	9296,05	9314,24
Mu·10 ⁵ , Πa·c	1,22	1,22	1,23	1,23	1,23	1,24
Lt·10 ⁵ , Вт/(м·К)	1641,71	1649,65	1658	1666,35	1674,7	1683,04
$Lt' \cdot 10^5$, $Bt/(M \cdot K)$	1641,71	1649,66	1658,01	1666,36	1674,71	1683,06
Pr'·10 ³	683,722	683,926	684,165	684,402	684,635	684,865
$z \cdot 10^{3}$	340.041	340,04	340,041	340,041	340,041	340,041

Из полученных термодинамических данных (табл.2 и 3) видно, что кислотная конверсия карбонатсодержащего сырья при указанных режимных параметрах имеет место (\mathbf{I} <0, \mathbf{U} <0), и эффективно осуществляется при использовании серной кислоты, поскольку продукты реакции CaSO₄, CO₂ и H₂O могут быть использованы в качестве строительных материалов.

На основании полученных равновесных данных определены рабочие характеристики системы (табл.4) и предложены прикладные аспекты кислотной деструкции минерального техногенного сырья и аппаратурное оформление процесса (рис.1).

Таблица 4 Технические характеристики установки по получению ${
m CO}_2$

$N_{\underline{0}}$	па	показатели	
1	производительность по СО2		- 24 нм ³ /час (48 кг)
2	расход исходных материалов	карбонат кальция	- 109 кг/час
		серная кислота	- 106 кг/час
		вода	- 218 л/час
,	емкость бункера для СаСО3		- 0,5 м ³
	емкость бака для серной кислоты		- 0,5 м ³
;	необходимое давление сжатого воз	духа	3-4 атм
	расход сжатого воздуха приведенно	3-5 м ³ /час	
	установленная мощность электроді	2,7 квт	
3	выход отходов (гипс + вода)		- 388 кг/ч
)	габаритные размеры установки: дл	ина	- 1750 мм
	Ш	ірина	- 1600 мм
	ВЫ	сота	- 3140 мм
10	вес установки		- 1860 кг

Рис.1. Технологическая схема получения диоксида углерода (CO₂) кислотным методом из карбонатосодержащих отходов

1-Расходный бак серн ой кислоты

2-Зйпориый вентиль

3-Дреиажный вентиль

4-Бак дозатор воды

5-Расходный вентиль

6-Мешалка

7-Пневмокран

8-Вагонетка

9-Сливной потруок

10-Реактор

11-Дренажный вентиль

12-Водянной фильтр

13-Вентиль подачи воды

14-Ковшавый мерник-дозатор

15-Кислотный вентиль

16-Кислотный вентиль 17-Мерник-дозатор кислоты

10 М

18-Мерное стекло 19-Трубопровод подачи CO2 20-осушитель СО

21-Манометр

22-Газовый счетчик

23,24,25.26.28.29.31.32.

34 -запорные вентили

27-Компрессор

30-Редуктор

35-Регулирирующий вентиль

36-Мокрый газгольдер

В технологическую схему входит следующее оборудование: расходный бак серной кислоты, $V = 1 \text{ м}^3$ из расчета работы в одну смену; кислотностойкий запорный вентиль расходного бака кислоты; дренажный вентиль бака дозатора воды; бак дозатор воды (на высоте 3,5 м); расходный вентиль бака для дозирования воды; мешалка якорная для смешивания размолотого известняка с водой и приготовления суспезии (на площадке высотой 3 м); пневмокран для слива суспензии из мешалки в реактор; вагонетка для шлама; сливной патрубок реактора; реактор цилиндрической формы с якорной мешалкой изготовленный из кислотностойких материалов (на высоте 2 м); дренажный вентиль водяного фильтра; водяной фильтр очистки газообразного диоксида углерода на высоте 1,2 м; вентиль подачи воды в водяной фильтр; ковшовой мерник - дозатор молотого известняка; кислотностойкий вентиль мерника кислоты; кислотностойкий вентиль слива кислоты из мерника дозатора; мерник-дозатор серной кислоты (из кислотностойкого материала на высоте 2,5 м); мерное стекло дозатора кислоты; трубопровод подачи полученного газообразного диоксида углерода из реактора в водяной фильтр; осущитель диоксида углерода с силикагелем; манометр; счетчик; запорные вентили на трубопроводе газовой сети; компрессор закачки газообразного диоксида углерода на хранение в газгольдеры №2 и №3 под давлением 7 атм, емкостью по 10 м³ каждый газгольдер №1, V = 8 м³, P = 0,1 атм. служит для первичного накопления CO_2 , который поступает под собственным давлением до 0,1 атм из реактора-фильтра; редуктор регулирования давления подаваемого CO_2 в цеха; вентиль регулятор подачи CO_2 в цеха; мокрый газгольдер для накопления, хранения и выдачи газообразного диоксида углерода под постоянным давлением на производство сварочных работ.

Условные обозначения: V-удельный объем, м³/кг; S-энтропия, кДж/(кг·К); I-полная энтальпия, кДж/кг; U-полная внутренняя энергия, кДж/кг; µ- число молей, моль/кг; Ср′- удельная теплоемкость (равновесная), кДж/(кг·К); ММфиолярная масса газовой фазы, г/моль; Rq- газовая постоянная, Дж/(кг·К); Ср′ф-теплоемкость газовой фазы (равновесная), кДж/(кг·К); Ми-коэффициент динамической вязкости, Па·с; Lt-коэффициент теплопроводности, Вт/(м·К); Lt′- полная теплопроводность, Вт/(м·К); Pr′-число Прандтля (равновесное); z-массовая доля конденсированных фаз.

Литература:

1. Синярев Г.Б., Ватолин Н.А., Трусов Б.Г., Моисеев Г.К. Применение ЭВМ для термодинамических расчетов металлургических процессов - Москва: Наука, 1982.