Утепов Т.Е.

РАЗРАБОТКА СПЛАВОВ С ПОВЫШЕННЫМИ ДИССИПАТИВНЫМИ ХАРАКТЕРИСТИКАМИ, ЛЕГИРОВАННЫЕ ХРОМОМ И ИТТРИЕМ

УДК: 628.517.2:669

Представлены материалы исследования акустических свойств металлических материалов при соударении для снижения шума в источнике возникновения. Разработаны новые легированные демпфирующие сплавы для техники борьбы с шумом.

Materials of research of acoustic properties of metal materials are presented at impact for decrease in noise in a source of occurrence. Are developed new alloyed damping alloys for technics of struggle against noise.

Рост производительности современного оборудования в промышленном комплексе приводит к неуклонному возрастанию шума и вибраций, что ухудшает условия труда работающих. Одними из распространенных деталей машин и механизмов являются упругие элементы (рессоры, пружины, шайбы гровера и др.), которые воспринимают ударные процессы и генерируют шум высоких значений. Известные методы снижения шума (звукоизоляция, звукопоглощение, средства индивидуальной защиты и др.) недостаточны для снижения шума. Поэтому научные исследования в области охраны труда, направленные на снижение шума ударного происхождения в источнике возникновения с применением новых демпфирующих материалов являются актуальными.

Целью работы является разработка и исследование новых рессорно-пружинных сталей, снижающие шум ударного происхождения и тем самым улучшающие условия труда работающих.

При прочих равных условиях детали машин из сплавов высокого демпфирования (СВД) более надежны при вибрационных и ударных нагружениях, чем изготовленные из обычных конструкционных материалов.

В качестве объекта исследования выбрали как стандартные сплавы, так и новые выплавленные (таблица 1). Исследовали акустические (уровень звука, уровень звукового давления) характеристики сплавов.

Nο Марка Химический состав. % вес Механические свойства стали п/п σ,, \mathbf{C} Si Mn Cr Другие МΠа Е, МПа % элементы 1 ≤ 0.25 $\leq 0.25 \, \mathrm{Ni}$ 210 000 65 0,6-0,70,17-0,37 0,5-0,81000 10 35 ≤ 0.25 $\leq 0.25 \, \mathrm{Ni}$ 2 8 60Γ 0,57-0,65 0,17-0,37 0,7-1,01000 30 210 930 $\leq 0.03 \, \text{S}$ 3 У7 0,15-0,35 0,2-0,40,30 650 15 0,65-0,74 211 600 $\leq 0.035 \, P$ 4 0,1 Y T1 0,84 0,45 950 12 206 000 0,8 0,25 38 0.1 Y 9 210 000 5 T2 0,6 0.22 0.55 0,48 1000 35 T3 0,79 15 6 0,7 0,31 0,28 0,1 Y 208 000 640 _ 7 T4 0.56 10 212 000 0,6 0.29 0.24 0.1 Y 670

Таблица 1 - Химический состав и механические свойства исследованных сталей

Для исследования были выбраны рессорно-пружинные стали 60Г, 65, У7 и демпфирующие разработанные новые рессорно-пружинные стали Т1, Т2, Т3 и Т4, механические характеристики которых приведены в таблице1.

Опытные сплавы выплавлялись в тигельной индукционной печи емкостью 6-12 кг с основной футеровкой.

Слитки подвергались горячей ковке по технологии: нагрев до 1100 °C, выдержка 0,5 ч. и ковка с промежуточными подогревами до 1100 °C. Закалка проводилась по режиму: нагрев до Ac₃ +50 °C, выдержка 0,5 ч., охлаждение в масле. Нагревание проводилось в кварцевых ампулах (вакуум порядка 10⁻³ атм.) муфельной печи.

На основе аналитического обзора устройств для исследования шума соударений (от установки Н.И. Дреймана 1968г. до установки «КазНТУ- 2006») была разработана новая установка для исследования ударного звука «КазНТУ-2007» [4].

 $[\]delta_5$ – относительное удлинение после разрыва, %

Е* – после закалки и отпуска

НАУКА И НОВЫЕ ТЕХНОЛОГИИ, № 3-4

Уровни звукового давления исследовали в октавных полосах частот в диапазоне 1000-31500 Гц, уровни виброускорения – в диапазоне 31,5-31500 Гц. Уровень звука – по шкале «А».

В таблице 2 представлены акустические характеристики образцов из разработанных рессорнопружинных сталей при соударении с ударником, падающим с разных высот.

Таблица 2 – Акустические характеристики образцов, разработанных рессорно-пружинных сталей при соударении

№ Марка РПС Высота Уровни звуковых давлений, дБ, в октавных полосах со средне- УЗ,										
No	Марка РПС	Высота	Уровни звуковых давлений, дБ, в октавных полосах со средне- геометрическими частотами, Гц							
п/п	(образцов)	ударника	геометрическими частотами, Гц							
		h	1000	2000	4000	8000	16000	31500		
1	2	3	4	5	6	7	8	9	10	
1	T1	$h_1 = 7 \text{ cM}$	41	46	53	58	56	41	64	
		$h_2 = 10 \text{ cm}$	47	53	59	70	60	43	72	
		$h_3 = 12 \text{ cm}$	49	56	62	72	62	50	72	
		$h_4 = 17 \text{ cm}$	53	63	65	81	67	58	76	
		$h_1 = 7 \text{ cM}$	40	51	58	64	57	46	66	
		$h_2 = 10 \text{ cm}$	55	53	62	69	63	44	71	
2	T2	$h_3 = 12 \text{ cM}$	51	59	64	74	78	49	74	
		$h_4 = 17 \text{ cM}$	54	54	62	67	77	63	78	
3	Т3	$h_1 = 7 \text{ cM}$	49	48	52	56	53	52	54	
		$h_2 = 10 \text{ cm}$	57	56	61	72	76	51	71	
		$h_3 = 12 \text{ cm}$	48	59	65	76	67	54	74	
		$h_4 = 17 \text{ cm}$	52	57	61	79	66	56	78	
4		$h_1 = 7 \text{ cM}$	48	52	59	65	59	48	68	
	T4	$h_2 = 10 \text{ cM}$	58	54	64	70	64	45	72	
7	17	$h_3 = 12 \text{ cm}$	49	60	65	73	78	47	74	
		$h_4 = 17 \text{ cm}$	54	55	63	69	76	62	79	

Амплитудно-зависимое демпфирование звукоизлучения (АЗДЗ) обнаружено в сплавах Т1, Т2, Т3, Т4.

Амплитудно-зависимое демпфирование звукоизлучения (АЗДЗ) заключается в том, что при соударениях образца с ударниками с разной энергией происходит повышенное затухание при увеличении амплитуды удара (высоты падения ударника перед контактом), так, например, если ударник падая с высоты h_2 =10 см создает звуковой импульс 55дБ, а при падении с высоты h_3 =12 см; создает шум 51 дБ (образец Т2, частота 1000 Гц, таблица 2), то АЗДЗ составляет 4 дБ; а при сравнении этого же образца на этой же частоте при h_1 =7 см и h_2 =10 см

АЗДЗ отсутствует, т.к. УЗД этих соударений соответственно 40 и 55 дБ, т.е. при более сильном ударе генерируется шум большей интенсивности. В то время как при АЗДЗ при сильном ударе шум соударений ниже, чем при слабом соударении.

 $(h_1 \div h_4)$ – высота ударника перед контактом

Рисунок 1 – Характеристики звукоизлучения образца Т3 при соударении.

В соответствии с рисунком 1 максимальный эффект амплитудно-зависимого демпфирования звукоизлучения образца Т3 обнаружен на частотах 1000, 4000, 16000 Гц.

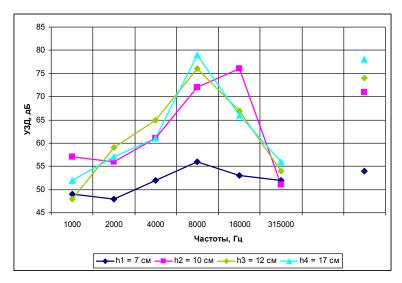
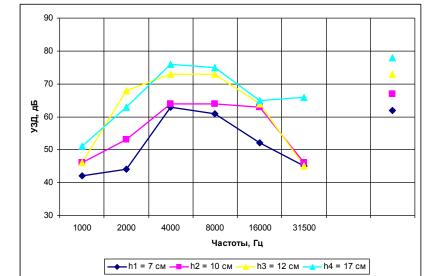



Таблица 3 – Акустические характеристики стандартных рессорно-пружинных сталей

НАУКА И НОВЫЕ ТЕХНОЛОГИИ, № 3-4

No	Марка	Высота удар-	Уровни звукового давления, дБ, в октавных полосах со средне-							
п/п	РПС	ника перед со-	геометрическими частотами, Гц							
		ударением	1000	2000	4000	8000	16000	31500		
1	2	3	4	5	6	7	8	9	10	
1	65	$h_1 = 7 \text{ cM}$	42	44	63	61	52	45	62	
		$h_2 = 10 \text{ cm}$	46	53	64	64	63	46	67	
		$h_3 = 12 \text{ cm}$	46	68	73	73	64	45	73	
		$h_4 = 17 \text{ cM}$	51	63	76	75	65	66	78	
2	60Г	$h_1 = 7 \text{ cM}$	45	47	66	63	57	51	66	
		$h_2 = 10 \text{ cm}$	51	54	65	68	66	51	67	
		$h_3 = 12 \text{ cm}$	49	70	74	75	61	48	75	
		$h_4 = 17 \text{ cM}$	55	67	73	76	66	61	81	
3	У7	$h_1 = 7 \text{ cM}$	47	51	68	66	62	53	71	
		$h_2 = 10 \text{ cm}$	54	58	65	66	68	54	71	
		$h_3 = 12 \text{ cm}$	53	68	71	76	63	55	76	
		$h_4 = 17 \text{ cm}$	59	71	74	75	63	69	81	

Амплитуднозависимое демпфирование звукоизлучения у образца 65 обнаружено на частотах 2000 и 31500 Γ ц.

 $(h_1 \div h_4)$ – высота ударника перед контактом

Рисунок 2 – Характеристики звукоизлучения рессорно-пружинных сталей 65 при соударении

На частоте 31500 Γ ц при соударениях образца стали 65 с ударником с высоты (h₁) УЗД=46 дБ, а при соударении образца 65 ударником (h₂) УЗД=44 дБ. Эффект АЗДЗ=1 дБ.

Заключение

- 1. Известные методы борьбы с шумом ударного происхождения не эффективны (звукоизоляция, звукопоглощение и др.). Наиболее перспективным способом снижения шума соударений является использование демпфирующих материалов.
- 2. Известные стандартные стали обладают низкими диссипативными характеристиками, поэтому детали из этих сталей излучают шум высоких уровней, тем самым ухудшающие условия труда на производстве.
- 3. Разработаны новые стали, которые по демпфирующим свойствам превосходят стандартные и обеспечивают пониженные уровни шума при ударном взаимодействии. При этом снижение шума составляет 8-14 дБА.

НАУКА И НОВЫЕ ТЕХНОЛОГИИ, № 3-4

Литература:

- 1 Monitoring of influence of environmental noise on health in the Gzech Republic /Sisma Petr //Acustica. 1996. -82, Suppl. Nl p. S168.
- 2 Subjective annoyance response the engine sounds using three different rating methods /Khan M. Shafiguzzaman, Johansson Orjin, Sundback ulrick //Acustica. 1996. -82, Suppl. Nl p. S213.
- 3 Predichting noise-induced sleep disturbance /Pearsons Karl S., Barber David S., Tabachnic Barbara G., Fidell Sanford //J. Acoust. Soc. Amer. -1995. -97 y., Nl. -P. 331 -338.
- 4 Карменов К.К., Сулеев Д.К., Утепова А.Б. и др.// Акустические свойства разработанной рессорнопружинной стали КК-1//Безопасность жизнедеятельности. Сборник научных публикаций: Вып.3. Алматы: КазНТУ, 2007. 274с. (с.34-39).

26