<u>ИНФОРМАТИКА</u>

Тухлиев З.К., Камбаров А.

ОБ ОДНОМ МЕТОДЕ РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

К решению задач линейного программирования посвящено очень много работ. Несмотря на это в настоящее время с применением современной вычислительной техники разрабатывается новые методы решения этих задач. Однако, при использовании персональных компьютеров основном использовались различные версии языков программирования Бейсик, Паскаль, С++ каждый из которых имеет определенные преимущества и недостатки. Но для этого от пользователя потребовались, чтобы он владел одним из выше названных языков программирования, которое усложняет применение персональных компьютеров. В этой работе показываются, как легко решаются задачи линейного программирования с применением стандартных функций MS Excel.

Известно, что (см. например[1-2]) математическая модель задач линейного программирования общем виде выглядит следующим образом.

а) Если надо найти максимальное значение линейной функции

$$Z = \sum_{i=1}^{n} C_i x_i \tag{1}$$

при ограничениях

$$\begin{cases} \sum_{J=1}^{n} a_{iJ} x_{J} \leq b_{i}, i = \overline{1, m} \\ x_{J} \geq 0, J = \overline{1, n} \\ b_{i} \geq 0, i = \overline{1, m} \end{cases}$$
(2)

то такие задачи называются «Задачи использования сырья».

б) Если надо найти наименьшие значения линейной функции (1) при ограничениях (2) (только после замены знака «»≤ к «k») называется «Задача составления рациона».

в) Если надо найти наименьшие значения линейной функции

 $z = Y_k(S) -$

при ограничениях
$$\begin{cases} \sum_{J=1}^{n} a_{iJ} x_{J} \leq b_{i}, i = \overline{1, m} \\ x_{J} \geq 0, J = \overline{1, n} \\ b_{i} \geq 0, i = \overline{1, m} \end{cases}$$

то такие задачи называются «Транспортной задачей». В этой работе покажем, как легко решаются эти

задачи с помощью MS Excel.

Пусть задан математический модель транспортный задачи следующим образом.

$$10x_{11} + 7x_{1}\underline{A} + 4x_{13} + x_{14} + 4x_{15} = 100$$

$$2x_{2}\underline{S} + 7x\underline{S}_{2} + 10x\underline{A}_{3} + 6x_{24} + 11x_{25} = 250$$

$$7x_{31} + 5x_{32} + 3x_{33} + 2x_{34} + 2x_{35} = 200$$

$$11x_{41} + 8x_{42} + 12x_{43} + 16x_{44} + 13x_{45} = 300$$

$$10x_{11} + 2x_{21} + 7x_{31} + 11x_{41} = 200$$

$$7x_{12} + 7x_{22} + 5x_{32} + 8x_{42} = 200$$

$$4x_{13} + 10x_{23} + 3x_{33} + 12x_{43} = 100$$

$$x_{14} + 6x_{24} + 2x_{34} + 16x_{44} = 100$$

$$4x_{15} + 11x_{25} + 2x_{35} + 13x_{45} = 250$$
(3)

(3) и (4) нужно выбрать
$$x_{IJ}^0$$
 такое решение ограничение целевая функция

 $x_{ii} \ge 0$ $(i = \overline{1,4} \quad J = \overline{1,5})$

 $Z = \sum_{i=1}^{4} \sum_{j=1}^{5}$ приняла минимальное значение.

Результат этой задачи покажем на **MS Excel**, то есть напишем алгоритм:

1. А3:Т3 диапазон ячеек для переменных

$$X_{IJ}$$
 (i= $\overline{1,4}$; j= $\overline{1,5}$) (рис.1)

2. В ячейку С4 вводим целевую функцию в виде формулы =10 *А3+7 *В3+4 *С3+D3+4*Е3+2*F3+7* G3+10*H3+6*I3+11*J3+7*K3+5L3+3*M3+2*N3+2* O3+11*P3+8*Q3+12*R3+16*S3+13*T3

НАУКА И НОВЫЕ ТЕХНОЛОГИИ, 3-4, 2007

3. В ячейки А7:А10 вводим левую часть ограничения(3), в В7:В10 правую часть ограничения, в ячейки А11:А15 вводим левую часть (4) ограничения, в В11:В15 правую часть ограничения (рис.1):

Ячейки	Формулы	Ячейки	Значения
A7 =10*A3	+7*B3+4*C3+D3+4*E3	B7	100
A8 =2*F3+7	7*G3+10*H3+6*I3+11*J3	B8	250
A9 =8*K3+	5*L3+3*M3+2*N3+2*O3	B9	200
A10=11*P3	+8*Q3+12*R3+16*S3+13*T3	3 B10	300
A11=10*A3	3+2*F3+8*K3+11*P3	B11	200
A12=7*B3-	+7*G3+5*L3+8*Q3	B12	200
A13 =4*C3-	+10*H3+3*M3+12*R3	B13	100
A14=D3+6	*I3+2*N3+16*S3	B14	100
A15=4*E3+	+11*J3+2*O3+13*T3	B15	250

	licrosoft	Excel - Кн	ига_001					
:B)	<u>Ф</u> айл [равка <u>В</u> и	д Вст <u>а</u> вка	Формат	Сервис	<u>Д</u> анные <u>О</u> к	но <u>С</u> прав	ка _ 8 ×
10	💕 🖬		X 🗅 😤	- (2) -	(* - 😣 🗴	E - ≙↓ ∦↓	1 🛄 🦚	100% -
10	- ж	<u>кч</u>		9% 0	00 .00 .00	∉ ≉ 📖	• <u>A</u> •	-
-	C4	-	<i>f</i> ≥ =10*A	3+7*B3+	4*C3+D3+4	*E3+2*F3+7	'*G3+10*H	3+6* 3+11*
	A	В	J3+7*	K3+5*L3	+3*M3+2*N3	8+2*03+11*	P3+8*Q3+	12*R3+16*
1	пере	менные	S3+13	3*T3				
2	x11	x12	x13	×14	×15	x21	x22	x23
3			-	a.				
4	целева	я функция		<u> </u>				_
6	0003		-	-				
7	orpui	10	10					
8		25	50					
9		20	10					
10) 30	10					
11		0 20	10					
12		0 20	10	_				
15		J 10	10					
14		J 10 D 26	:0					
16			10					
17			-					_
18								v
H 4	▶ н∖л	ист1/Ли	т2 / ЛистЭ	1	<))		>
Гото	B0						NUM	
					Рис.1			

4. Используем функцию Поиск решения в MS EXCEL. Выполняется команда Сервис Поиск решения. Отображается диалоговое окно Поиск решения (рис. 2).

Поиск решения	
Установить целевую ячейку: 🔀	<u>В</u> ыполнить
Равной: О максимальному значению О значению: 0	Закрыть
Оминикальному значению Изменяя ячейки:	
-	
Ограничения:	Параметры
<u></u> <u>Доб</u> авить	
Изменить	BOCCTONORHTH
🗸 🛛 💆 далить	
	Справка

Рис. 2

Для ввода ячейки C4, установите курсор на поле Установить целевую ячейку курсором мышки и выделяем ячейку C4.

5. Для ввода диапазон ячеек A3:T3 на поле **Изменяя ячейки** курсором мышки выделяем A3, после нажав клавишу SHIFT выделяем T3.

6. Изменение задачи вводятся в окне Добавление ограничения (рис. 3), после осуществляется нажатие кнопки Добавить и выводится диалоговая окно Поиск решения.

На поле Ссылка на ячейку сначала расположенные в ячейках А3:Т3 вводятся следующим образом: курсором мышки выделим ячейку А3 и после, нажатием клавиши SHIFT выделим ячейку Т3. Раскрывающийся список позволяет задать тип соотношения между левой и правой частями ограничения, в нашем случае выберите соотношение >=, на поле Ограничение пишем (цифру)- 0 (рис.3).

Ссылка на <u>я</u> чейку:		<u>(</u>	<u>О</u> граничен	ие:
\$A\$3:\$T\$3	1 >=	~ [0	
				<u></u>

7. Нажмите кнопку Добавить и с помощью окна Добавление ограничения введите вторую группу ограничений, налагаемых на переменные A7:A15 = B7:B15.

8. Нажмите кнопку **ОК** для завершения ввода ограничений. На экране опять отобразится окно **Поиск решения**, но теперь уже заполненное (рис.4).

/становить целевую	і ячейку: 🛛 🛣	\$4 💽		Выполнить
Равной: 🚫 <u>м</u> аксими	альному значению	<u>) з</u> начению	: 0	Закрыть
💿 минима.	пыному значению			
Измендя ячейки:				
\$A\$3:\$T\$3		N	редположить	
Ограничения:				Параметры
\$A\$3:\$T\$3 >= 0	.eneur		До <u>б</u> авить	
\$4\$7:\$4\$15 = \$8\$7	:\$8\$15		Изменить	
			<u>H</u> andring	Восстановит
			Удалить	

НАУКА И НОВЫЕ ТЕХНОЛОГИИ, 3-4, 2007

9. Нажмите кнопку Параметры. На экране отобразится диалоговое окно Параметры поиска решения (рис.5).

Параметры поиска	решен	ия				×
Максимальное время:	[100	секунд	ı	ОК]
Предел <u>ь</u> ное число ите	ераций:	100			Отмена	
О <u>т</u> носительная погре	шность: [0,00000	01		<u>З</u> агрузить модель	
Допустимое отклонен	ие: [5		%	Сохр <u>а</u> нить модель	ן
С <u>х</u> одимость:	[0,0001			<u>С</u> правка	
Линейная модель			Авто <u>м</u> а	тическ	ое масштабирование	
Неотрицательн <u>ы</u> е	значения	ı 🗌	Показь	вать р	езультаты итераций	
 линейная 		и Имые		 ● H 	ьютона	
<u>О к</u> вадратичная	Оцен	тральн	ые	0 00	опряженных градиентов	

Рис.5

В нашем конкретном случае установите флажок **Линейная модель**, а остальные значения, можно оставить так, как они и есть. Нажмите кнопку **ОК**. На экране опять отобразится окно **Поиск решения** (рис.6).

Рис.6

10. Нажмите кнопку Выполнить. На экране отобразится окно Результаты поиска решения (рис.7).

1	⊈айл ⊡р	авка <u>В</u> ид	Вставк	a d	ормат	Сервио	Да-	ные 🛛	но	⊆правка			- 8
D		ala	0.149	12	IX De	8	31	17 - 191	- 11	. Σ -		1 📣 100%	- 0
6 ri	al Cur	- 10	- 1	V	u =			0/	000	*,0 ,00		10 - As -	Δ -
	0107	-	 As 5. = 102 	A.2.1	1 =	02.03		1.0#E2.1	*****	,00 ⇒,0	10 14 10	771/2 (571)	
-	A	B	N3+0	*0*	+11*P3-	+8*03-	+12*R	3+16*\$3	+13*	710 H376 T3	10411-00-	NUTUL	5-010 CFC
1	nenev					10 00							
2	x11	¥17	x13	×	14	×15		x21	×	22	x23	x74	x25
3	0	14 28571	A 10	0		0	0	The I	0	0	-2.2E-15	0	22 727
4	целевая	функция	8	50 I		-			-	-			
5	1	13 1		-									
6	ограни	чение			TTTT AND TH	744400 1995		2					
7	100	100	Pea	Результаты поиска решения 🛛 🛛 🔯									
8	250	250	Per	рение	найдено	Bce orp	аничен	ия и услов	ня				
9	200	200	001	гинал	ьности вь	полнена	bl.			Тип	отчета		
10	300	300	-							Pesy	льтаты	~	
11	200	200	(Co	фанить н	эйденно	e pewe	не		Усто Пред	ИЧИВОСТЬ 16ЛЫ		
12	200	200	(Boo	становит	ы искодн	ные знач	нения				~	
13	100	100	6					-				_	
14	100	100	L	0	K	Отне	на	Сохран	ть сц	енарий	Справка		
15	250	250										-	
16				-									
17				_		_			-				-
18				_		_			_				
19				-					-				
20		. (-	. /-						Low 1		1		
4 4	н н \ли	сті д Лист.	2 K LINCT	3/					<				>

Рис.7

Значит минимальное значение целевой функции равно 850 при соответствующих значениях переменных, которые указаны в рис.7.

В заключение отметим, что все задачи линейного программирования могут решаться аналогичными методами.

Литература:

- Ю.Н.Кузнецов, В.И.Кузубов, А.Б.Волощенко Математическое программирование, Высшая школа, Москва, 1980 г.
- 2. С.А.Ашманов Линейное программирование, Наука, Москва, 1981 г.