ИЗВЕСТИЯ ВУЗОВ КЫРГЫЗСТАНА, № 1, 2021

Сапалова С.А., Чыныбек кызы Ж., Байдинов Т.Б. СУУ ЧӨЙРӨСҮНДӨ КАДМИЙ НИТРАТЫНЫН N, N-ДИМЕТИЛФОРМАМИД ЖАНА N, N-ДИМЕТИЛАЦЕТАМИД МЕНЕН 25°С ӨЗ АРА АРАКЕТТЕШҮҮСҮ

Сапалова С.А., Чыныбек кызы Ж., Байдинов Т.Б. ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ НИТРАТА КАДМИЯ С N, N - ДИМЕТИЛФОРМАМИДОМ И N, N- ДИМЕТИЛАЦЕТАМИДОМ В ВОДНОЙ СРЕДЕ ПРИ 25°С

S.A. Sapalova, Chynybek kyzy Zh., T.B. Baydinov

RESARCHED OF INTEREACTNON NITRATE OF CADMIUM WITH N, N- DIMETHYLFORMAMIDE AND N,N-DIMETHYLACETAMIDE IN THE WATER ENVIRONMENT AT 25°C

УДК: 546.47,49 (575.2) (04)

Кадмийдин нитраты -N,N- диметилформамид — суу, нитрат кадмий - N,N- диметилацетамид — суу системаларында эригичтик ыкмасы менен эригичтүүлүк жана катуу фазалар изилденди. Химиялык анализдер: суюк жана катуу фазаларды төмөнкү ыкма боюнча жүргүзүлдү: кадмийдин иондорун эриохром кара индикаторунун катышуусунда аныктадык. Катуу фазалар "калдыктары" ыкмасы менен идентификацияладык. Азотту аныктоодо Къельдалдын ыкмасын колдондук. Биринчи: Cd(NO₃)₂—HNCO(CH₃)₂—H₂O жана экинчи Cd(NO₃)₂ — CH₃NCO(CH₃)₂ — H₂O системада, сууда конгруэнттүү эриген курамында 1:2:2 катышта болгон эки жаңы бирикме алынды.

Негизги сөздөр: кадмийдин нитраты, N,N - диметил-формамид, N,N - диметилацетамид, комплекстер, физико-химиялык, Скрейнемакерс, Къельдаль.

Исследованы растворимость и твердые фазы в системах нитрат кадмия N,N- диметилформамид - вода, нитрат кадмия - N,N- диметилацетамид — вода при25°С методом растворимости. Химические анализы жидких и твердых фаз проводились по следующей методике: ионы кадмия определяли в присутствии индикатора эриохрома черного с последующим пересчетом на нитрат кадмия. Количество N,N-диметилформамида, N,N-диметилацетамида — отгонкой аммиака по медоду Къельдаля. Твердые фазы идентифицировали методом "остатков" Скрейнемакерса. Первое: Cd(NO3)2 — HNCO(CH3)2 - H2O и второе Cd(NO3)2 — CH3NCO(CH3)2 — H2O соединение установлено образование конгруэнтно растворимых в воде двух новых соединений составом 1:2:2

Ключевые слова: нитрат кадмий, N,N-диметилформамид, N,N-диметилацетамид, комплексы, физико-химические, Скрейнемакерс, Къельдаль.

The Solubility and solid phases in nitrate cadmium – N,N-dimethylformamide-water, nitrate cadmium – N,N-dimethylace-tamide-water sistems at 25° C were investigated by the solubility

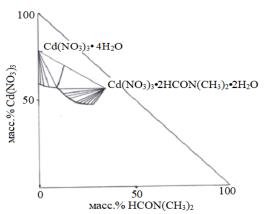
method. Chemical analyzes of liquid and solid phases were carried out according to the following procedure: cadmium ions were determined in the presence of the indicator eriochrome black, followed by conversion to cadmium nitrate. The amount of N, N-dimethylformamide, N, N-dimethylacetamide - by distillation of ammonia according to Kjeldahl honey. The solid phases were identified by the Skreinemakers' residue method. The first: Cd(NO3)2 - HNCO(CH3)2 - H2O and the second Cd(NO3)2 - CH3NCO(CH3)2 - H2O compound It was established by the formation of two new compounds congruently soluble in water with a composition of 1: 2: 2

Key words: nitrate cadmium, N,N-dimethylformamide, N,N-dimethylacetamide, complexes, physicochemical, Skreinemakers', Kjeldahl.

Введение. Развитие координационной химии на современном этапе направлено не только на разработку методов синтеза и получение новых веществ, но и на модификацию уже широкого применяемых методов получения комплексных соединений.

В настоящей работе объектами исследования являются комплексные соединения с нитратами кадмия (II) с N, N — диметилформамида и N, N — диметилацетамида с нитратом кадмия в водной среде методом растворимости.

Целью настоящей работы является исследование взаимодействия нитрата кадмия N, N — диметилформамидом и N, N — диметилацетамидом, выяснение условий образования соединений [4,5].


Методика исследования. Взаимодействие нитрата кадмия с N,N-диметилформамидом и N,N-диметилацетамидом при 25°C изучалось методом растворимости.

Для работы использовались нитрата кадмия марки «х.ч.», N, N-диметилформамид N, N-диметилаце-

ИЗВЕСТИЯ ВУЗОВ КЫРГЫЗСТАНА, № 1, 2021

тамид марки «ч.». Равновесие в системах устанавливалось в течение 10-12 часов. Химические анализы жидких и твердых фаз проводились по следующей методике: ионы кадмия определяли в присутствии индикатора эриохрома черного с последующим пересчетом на нитрат кадмия [2, 235-240]; количество, N, N-диметилформамида, N, N-диметилацетамида — отгонкой аммиака по медоду Къельдаля [3, 75-104]. Твердые фазы идентифицировали методом "остатков" Скрейнемакерса [1, 294-504].

Экспериментальная часть. Система $Cd(NO_3)_2$ - $HNCO(CH_3)_2$ - H_2O при 25^0C . Изотерма растворимости системы $Cd(NO_3)_2$ - $HNCO(CH_3)_2$ - H_2O при 25^0 С характеризуется двумя ветвями кристаллизации (рис. 1).

Рис. 1. Изотерма растворимости системы $Cd(NO_3)_2$ -HNCO($CH_3)_2$ - H_2O при 25° C.

Данные по растворимости в системе $Cd(NO_3)_2$ - $HCON(CH_3)_2$ - H_2O при 25°C.

Таблица 1

№	Состав жидкой фазы, масс. %		Состав тверд	ого остатка, масс. %	Кристаллизующаяся фаза
	Cd(NO ₃) ₂	HCON(CH ₃) ₂	Cd(NO ₃) ₂	HCON(CH ₃) ₂	
1	61,3	-	76.61	-	
2	59,0	1,24	76,02	0,23	Cd(NO ₃) ₂ •4H ₂ O
3	58,30	3,19	69,70	1,16	
4	57,61	5,78	74,07	0,79	
5	57,42	8,18	73,74	1,26	
6	57,14	8,78	68,24	13,27	$Cd(NO_3)_2 \cdot 4H_2O + Cd(NO_3)_2 \cdot 2HCON$
					$(CH_3)_2 \cdot 2H_2O$
7	56,18	11,34	56,36	30,18	
8	54,09	12,86	55,99	31,14	
9	52,21	13,34	56,12	34,38	Cd(NO ₃) ₂ ·2HCON (CH ₃) ₂ ·2H ₂ O
10	50,53	15,76	55,46	32,14	
11	49,78	18,12	55,75	33,32	
12	48,36	20,32	54,32	31,18	
13	47,82	23,14	55,37	33,27	
14	47,16	25,30	55,12	33,14	
15	48,24	28,18	55,76	34,55	
16	48.13	29.14	56.14	34.86	

Первая ветвь (точки 1 - 6) соответствует кристаллизации в твердую фазу из насыщенных растворов четырех водного нитрата кадмия. Кристаллизация его заканчивается в эвтонической точке 6 с содержанием компонентов в жидкой фазе 57,14% Cd(NO₃)₂ и 8,78% HNCO(CH₃)₂.

В пределах второй ветви происходит выделение из равновесных насыщенных водных растворов новой твердой фазы, соответствующей соединению $Cd(NO_3)_2\cdot 2HCON(CH_3)_2\cdot 2H_2O$, которое растворяется в воде конгруэнтно. Концентрационные пределы выделения этого соединения по исходным данным компо-

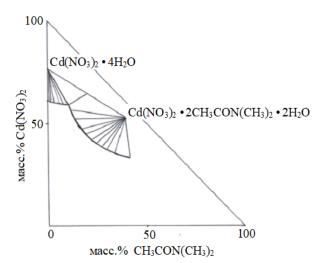
нентам составляют от 56,18% до 48,13% нитрата кадмия $Cd(NO_3)_2$ и от 11,34% до 29,14% N, N — диметилформамида $HCON(CH_3)_2$.

 $N,\ N$ — диметилформамид как жидкое вещество не имеет ветвь кристаллизации.

Система $Cd(NO_3)_2 - CH_3NCO(CH_3)_2 - H_2O$ при **25**°C. Изотерма растворимости системы нитрат кадмия – N, N — диметилацетамид — вода при 25°C характеризуется наличием двух ветвей кристаллизации (рис. 2, табл. 2). Первая ветвь (точки 1-5) указывает на выделение в твердую фазу из насыщенных равновесных растворов четырехводного нитрата кадмия.

ИЗВЕСТИЯ ВУЗОВ КЫРГЫЗСТАНА, № 1, 2021

Кристаллизация его заканчивается в эвтонической точке с содержанием компонентов в жидкой фазе 58,80% Cd(NO₃)₂ и 10,6% CH₃CON(CH₃)₂.


При содержании в жидкой фазе нитрата кадмия от 55,24% до 34,25% и N, N — диметилацетамида от 12,12% до 42,12% в твердую фазу выделяется новое соединение с соотношением компонентов

1:2:2 - Cd(NO₃)₂·2CH₃CON(CH₃)₂·2H₂O, которому отвечает вторая ветвь. Состав соединения Cd(NO₃)₂·2CH₃CON(CH₃)₂·2H₂O, найденного экспериментально:

 $Cd(NO_3)_2 - 38,24\%$, $CH_3CON(CH_3)_2 - 49,04\%$, $H_2O-12,20\%$, он очень близок к теоретически рассчитанному составу:

 $Cd(NO_3)_2 - 38,44\%$, $CH_3CON(CH_3)_2 - 49,24\%$, $H_2O - 12,31\%$, соединение растворяется в воде конгруэнтно.

 $N,\,N$ — диметилацетамид как жидкое вещество не имеет ветвь кристаллизации.

Рис. 2. Изотерма растворимости системы Cd(NO₃)₂ -CH₃NCO(CH₃)₂ - H₂O при 25° C.

Данные по растворимости в системе $Cd(NO_3)_2$ - $CH_3CON(CH_3)_2$ - H_2O при 25° С.

Таблица 2

№	Состав жидкой фазы, масс. %		Состав твердого остатка, масс. %		Кристаллизующаяся фаза
	Cd(NO ₃) ₂	CH ₃ CON(CH ₃) ₂	Cd(NO ₃) ₂	CH ₃ CON(CH ₃) ₂	
1.	61,3	-	76,61	•	
2.	60,44	1,22	66,14	0,86	
3.	60,18	2,46	68,02	1,36	$Cd(NO_3)_2$ •4 H_2O
4.	59,26	5,24	68,14	2,78	
5.	59,24	7,44	67,28	4,08	
6.	58,84	9,18	69,21	3,82	
7.	58,80	10,06	64,00	18,84	Cd(NO ₃) ₂ •4H ₂ O + Cd(NO ₃) ₂ •2HCON (CH ₃) ₂ •2H ₂ O
8.	55,24	12,12	53,63	26,16	
9.	51,53	13,34	52,22	27,67	
10.	47,22	17,43	50,18	28,84	
11.	44,14	18,71	49,48	31,23	$Cd(NO_3)_2$ •2 $HCON(CH_3)_2$ •2 H_2O
12.	42,06	22,34	49,00	33,12	
13.	40,25	24,48	47,81	33,38	
14.	38,42	27,22	47,36	34,47	
15.	37,21	30,34	47,43	36,19	
16.	36,02	34,67	45,22	37,14	
17.	34,25	42,12	42,14	40,67	

Литература:

- 1. Аносов В.Я., Озерова М.И., Фиалков Ю.Я. Основы физико-химического анализа. М.: Наука, 1976. С. 504.
- 2. Васильев В.П. Аналитическая химия. В 2 ч. Ч. 1. Гравиметрический и титрометрический методы анализа. Учебник для химико-технол. спец. вузов. М.: Высшая школа, 1989. С. 235-242.
- 3. Климова В.А. Основные микрометоды анализа органических соединений. М.: Химия, 1975. С.75-104.
- 4. Сапалова С.А., Намазова Б.С., Байдинов Т.Б. Гетерогенные равновесия в системах йодид кадмия-формамид-вода, йодид кадмия N, N диметилформамид-вода при 25°С. // Вестник КНУ им. Ж.Баласагына. Сер.5. Вып.2. Естественные и гуманитарные науки. Бишкек, 2009. С. 73-75.
- Сапалова С.А. Взаимодействие сульфата меди с амидами. //Вестник Иссык-Кульского ун.-та. Каракол, 2010. №26. С. 212-217.