Макамбаева Ы.Ж., Жорокулов Д.А.

ЭЛЕКТР УЧКУНДУК ДИСПЕРСТӨӨ МЕТОДУ МЕНЕН СИНТЕЗДЕЛГЕН ТИТАНДЫН ЖАНА ВОЛЬФРАМДЫН КАТУУ ЭРИТМЕЛЕРИНИН ТЕРМИКАЛЫК ТУРУКТУУЛУГУ

Макамбаева Ы.Ж., Жорокулов Д.А.

ТЕРМИЧЕСКАЯ УСТОЙЧИВОСТЬ ТВЕРДЫХ РАСТВОРОВ МОНОКАРБИДОВ ТИТАНА И ВОЛЬФРАМА, СИНТЕЗИРОВАННЫХ МЕТОДОМ ЭЛЕКТРОИСКРОВОГО ДИСПЕРГИРОВАНИЯ

Y.Zh. Makambaeva, D.A. Zhorokulov

THERMAL STABILITY OF SOLID SOLUTIONS OF MONOCARBIDES OF TITANIUM AND TUNGSTEN SYNTHESIZED BY THE METHOD OF ELECTROSPARK DISPERSION

УДК: 546.261

Электр учкундук дисперстөө шартында синтезделген титан менен вольфрамдын кубдук монокарбиддеринин катуу эритмелерин абада 400°С чейин ысытканда алардын термикалык туруктуулугун рентген фазалык анализ методу көрсөткөн.

Негизги сөздөр: карбиддердин катуу эритмеси, электр учкундук дисперстөө, ысытуу, термикалык туруктуулук.

Методом рентгенофазового анализа показано, что твердые растворы кубических монокарбидов титана и вольфрама, синтезированные в условиях электроискрового диспергирования, термически устойчивы при нагревании в воздухе до 400°С.

Ключевые слова: твердый раствор карбидов, электроискровое диспергирование, нагревание, термическая устойчивость.

By the method of X-ray diffraction analysis showed that solid solutions of cubic titanium and tungsten monocarbides synthesized under the conditions of electrospark dispersion are thermally stable when heated in air up to 400 $^{\circ}$ C.

Key words: solid solution of carbides, electrospark dispersion, heating, thermal stability.

Объединение карбидов металлов IV-й (TiC) и VIй (WC) групп в квазибинарную систему WC-TiC позволяет получить уникальное сочетание компонентов с сильными Me-C (для TiC) и Me-Me (для WC) связями, что может быть положено в основу получения материалов с уникальным структурным состоянием и высокими функциональными, прежде всего механическими, свойствами [1].

Структура на основе относительно простой кубической гранецентрированной решетки и высокие функциональные характеристики исходных составляющих, делает квазибинарную систему WC-TiC весьма перспективной для ее промышленного использования [2].

Свойства твердого раствора карбидов титана и вольфрама (TiW)C, а также изделий на их основе,

сильно зависят от его дисперсности. В нанодисперсном состоянии многие физические, химические и термодинамические свойства карбидов меняются значительно, зачастую многократно превосходя значения параметров их микропорошков [3].

С использованием традиционных методов синтеза трудно получить твердые растворы карбидов титана и вольфрама в наноразмерном состоянии. Ранее [4] показано, что для синтеза сложного карбида (TiW)С перспективным является метод электроискрового диспергирования, который отличается достаточно простым аппаратурным оформлением, невысокими энергетическими затратами и упрощением схемы синтеза карбидных соединений [5].

Целью данной работы является изучение термической устойчивости твердого раствора (TiW)С синтезированного методом электроискрового диспергирования.

Для изучения термической устойчивости твердого раствора (TiW)С продукты совместного электроискрового диспергирования титана и вольфрама, и титана и твердого сплава T15К6 в гексане нагревались в муфельной печи в атмосфере воздуха при температуре 400°С в течении 30 мин. Твердый сплав T15К6 состоит из карбида вольфрама (79% масс.), карбида титана (15% масс.) и металлического кобальта (6% масс.).

Фазовый состав термически обработанных продуктов изучен методом рентгенофазового анализа, а их дифрактограммы сняты на дифрактометре RINT-2500 HV.

Дифрактограммы продуктов совместного электроискрового диспергирования титана с вольфрамом и сплавом T15K6 до и после термической обработки представлены на рисунках 1, 2, а результаты их расчета приведены в таблицах 1, 2.

Рис. 1. Дифрактограммы продукта совместного электроискрового диспергирования титана с вольфрамом до (1) и после термообработки (2)

Рис.2. Дифрактограммы продукта совместного электроискрового диспергирования титана со сплавом T15K6 до (1) и после термообработки (2).

Таблица 1

Результаты расчета дифрактограмм продукта совместного электроискрового диспергирования титана с вольфрамом до и после термообработки

N⁰	Эксперимен-		Фазовый состав					
	тальные							
	дан	ные						
	Ι	d, Aº	(Ti _x W _y)C		W ₂ C			
			hkl	a, Aº	hkl	a, Aº	c, Aº	
1	100	2,4776	111	4,292				
2	27	2,3559			002		4,712	
3	67	2,2769			101	2,992	4,714	
4	72	2,1463	200	4,293				
5	50	1,5176	220	4,292				
6	12	1,3423			103	2,992	4,714	
7	55	1,2951	113	4,295				
8	22	1,2389	222	4,292	201	2,996	4,711	
400°C								
1	100	2,5149	111	4,356				
2	19	2,3568			002		4,714	
3	65	2,2824			101	2,998	4,716	
4	55	2,1739	200	4,349				
5	34	1,5229	220	4,325				
6	23	1,5029			110	3,006		
7	5	1,3464			103	2,998	4,716	
8	30	1,3046	113	4,327				
9	19	1,2485	222	4,325				

Таблица 2

Результаты расчета дифрактограмм продукта совместного электроискрового диспергирования титана со сплавом T15К6 до и после термообработки

№	Экспериментальные		Фазовый состав					
	да	нные						
	Ι	d, A ^o	(Ti _x W _y)C		W ₂ C			
			hkl	a, Aº	hkl	a, Aº	c, Aº	
		Т	і-Т15К6					
1	100	2,4973	111	4,325				
2	15	2,2857			101	2,995	4,717	
3	81	2,1619	200	4,324				
4	43	1,5275	220	4,324				
5	26	1,3028	113	4,321				
6	14	1,2474	222	4,321	201	2,995	4,717	
400°C								
1	100	2,5218	111	4,368				
2	11	2,3556			002		4,711	
3	9	2,2924			101	3,001	4,708	
4	80	2,1880	200	4,376				
5	32	1,5362	220	4,345				
6	22	1,3049	113	4,328				
7	6	1,2485	222	4,325	102	3.001	4.708	

Результаты расчета дифрактограмм показывают, что продукты электроискрового диспергирования

систем Ti-W и Ti-T15К6 в гексане состоят из двух фаз. Главной фазой продуктов является твердый раствор монокарбидов титана и вольфрама (TiW)C с гранецентрированной кубической решеткой (рис. 1, 2, табл. 1, 2), а вторым компонентом является полукарбид вольфрама W₂C с гексагональной решеткой.

Результаты расчета дифрактограмм термически обработанных продуктов электроискрового диспергирования систем Ti-W и Ti-T15K6 показывают, что твердый раствор (TiW)C при нагревании в воздухе до 400°C, не зависимо от условий получения, практически остается без изменений. Наблюдается увеличение параметра кристаллической решетки данного твердого раствора на 0,025-0,043 А° (таблица 3). Это возможно связано с внедрением атома кислорода в кристаллическую решетку твердого раствора карбидов.

Карбид титана обладает сравнительно высокой стойкостью против окисления. Окисление порошка карбида титана начинается при температуре около 450^{0} С с образованием TiO₂ [6]. Интенсивное окисление TiC начинается при температурах выше 1100^{0} С [7]. Согласно данным авторов [8] при окислении карбида титана на начальной стадии образуется твердый раствор между TiC и TiO, который препятствует дальнейшему окислению. При температурах выше 1100^{0} С кислород диффундирует через слой твердого раствора, образуя TiO.

При нагревании на воздухе или в кислороде монокарбид вольфрама медленно окисляется до WO₃ [9]. Тонкий порошок WC начинает быстро окисляться при 500-520⁰C.

Проведена оценка размеров областей когерентного рассеяния (ОКР) частиц твердого раствора (TiW)С до и после термообработки по уширению рефлексов на дифрактограммах по формуле Шеррера – Селякова [10]:

$$\mathbf{d} = \frac{\lambda_{Cu}}{\beta \cdot \cos\theta} \,,$$

где d – размер ОКР, нм; λ_{Cu} – длина волны излучения медного анода (0,1540 нм); θ – угол рассеяния; β – физическое уширение линии на дифрактограмме $\beta = \frac{\omega \cdot \pi}{180}$, ω – ширина дифракционного максимума на половине его высоты.

Результаты расчета размеров ОКР частиц твердого раствора (Ti_xW_y)С представлены в таблице 3.

Таблица 3

Значение параметра решетки (а) и размеров ОКР (d) частиц твердого раствора (TiW)С до и после термообработки

№	Электрод- ная пара	До термообработки		После термообработки		
		a, Aº	d, нм	a, Aº	d, нм	
1	Ti-W	4,293	17,2	4,336	11,5	
2	Ti-T15K6	4,323	24.1	4,348	12,0	

ИЗВЕСТИЯ ВУЗОВ КЫРГЫЗСТАНА № 11, 2017

Результаты расчета размеров ОКР подтверждают образование наноразмерных частиц твердых растворов (TiW)С при совместном электроискровом диспергировании титана с вольфрамом, сплавом T15K6 (табл. 3). Размеры частиц твердых растворов (TiW)С до термической обработки составляют от 17 до 25 нм в зависимости от природы второго электрода. После термической обработки размеры частиц сложного карбида (TiW)С почти 2 раза уменьшается.

Таким образом, результаты рентгенофазового анализа показывают, что твердый раствор монокарбидов титана и вольфрама с кубической решеткой является термически устойчивым при нагревании до 400°С в воздухе.

Литература:

- Шовкопляс О.А., Соболь О.В. Закономерности формирования напряженно-деформированного состояния в ионно-плазменных конденсатах системы TiC-WC // ФИП, 2013, т. 11, №4. - С.431-438.
- 2. Соболь О.В. Структура, субструктурные характеристики и напряженное состояние нанокристаллических ионно-плазменных конденсатов квазибинарной карбидной системы WC-TiC // ФИП PSE, 2007, т. 5, №1-2. – C.101-109.

- Гордеев Ю.И., Абкарян А.К., Бинчуров А.С. и др. Разработка эффективных путей управления структурой и свойствами твердосплавных композитов, модифицированных наночастицами // Journal of Siberian Federal University. Engineering & Technologies, 2014, №7. - С. 270-289.
- Макамбаева Ы.Ж. Синтез наноразмерного твердого раствора (Ti,W)С при совместном электроискровом диспергировании титана с вольфрамом и его сплавами //Наука, новые технологии и инновации Кыргызстана, 2016, №7. - С. 114-116.
- Сатывалдиев А., Асанов У.А. Электроэрозионный синтез соединений переходных металлов. - Бишкек: КГНУ, 1995. - С. 187.
- Стормс Э. Тугоплавкие карбиды. М.: Атомиздат, 1970.
 С. 12-29.
- Самсонов Г.В., Эпик А.П. Тугоплавкие покрытия. М.: Металлургия, 1973. - С. 399.
- Войтович Р.Ф., Пугач Э.А. Окисление тугоплавких соединений. - К.: Наук. думка, 1968. - С. 84.
- Войтович Р.Ф. Окисление карбидов и нитридов. Киев: Наук.думка, 1981. - С. 192.
- Авчинникова Е.А., Воровьева С.А. Синтез и свойства наночастиц меди, стабилизированных полиэтиленгликолем // Вестник БГУ, 2013, сер.7, №3. - С. 12-16.

Рецензент: к.хим.н., доцент Жаснакунов Ж.К.