#### Сатывалдиева Г.Э.

## КӨМҮРТЕК ЖАНА ЖЕЗДЕН ТУРГАН НАНОДИСПЕРСТҮҮ КОМПОЗИЦИЯЛЫК МАТЕРИАЛДЫ АЛУУ

Сатывалдиева Г.Э.

# ПОЛУЧЕНИЕ НАНОДИСПЕРСНОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА, СОСТОЯЩЕГО ИЗ УГЛЕРОДА И МЕДИ

G.E. Satyvaldieva

# PREPARATION OF NANODISPERSED COMPOSITE MATERIAL CONSISTING OF CARBON AND COPPER

УДК: 541.14

Графиттин электр учкундук дисперстөө продукталарынын катышуусунда жездин иондорун гидразин менен химиялык калыбына келтиргенде көмүртектен жана жезден турган нанодисперстүү композициялык материал пайда болору рентген фазалык методу менен аныкталган.

**Негизги сөздөр:** композициялык материал, көмүтек, жез, химиялык калыбына келтирүү, графит, электр учкундук дисперстөө, продукт.

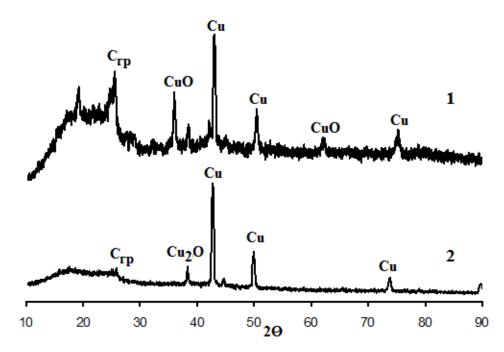
Методом рентгенофазового анализа установлено, что при химическом восстановлении ионов меди гидразином в присутствии продуктов электроискрового диспергирования графита происходит образование нанодисперсного композиционного материала, состоящего из углерода и меди.

**Ключевые слова:** композиционный материал, углерод, медь, химическое восстановление, графит, электроискровое диспергирование, продукт.

By the method of X-ray diffraction analysis, it was revealed that the chemical reduction of copper ions with hydrazine in the presence of electrospark dispersion products of graphite results in the formation of a nanodispersed composite material consisting of carbon and copper.

**Key words:** composite material, carbon, copper, chemical reduction, graphite, electrospark dispersion, product.

В настоящее время усиливается научный и практический интерес к созданию чистых, регулярно сформированных наноструктурированных металлуглеродных композитов. Это связано с проявлением размерных эффектов, изменяющих свойства наночастиц металла, — магнитные, электрохимические, каталитические [1]. Получение наноструктурированных металл-углеродных композитов, с заданными функциональными свойствами, морфологией, составом — сложный многоступенчатый процесс. Наиболее распространенными способами получения наночастиц металла на поверхности углеродной матрицы являются парофазное осаждение, пиролиз, электронно-лучевое воздействие, химическое восстановление с


ультразвуковой стабилизацией, карбонизация, восстановление в токе водорода [2]. Однако, как правило, имеющиеся методы получения либо требуют сложного аппаратного обеспечения и, следовательно, являются дорогостоящими. Поэтому целью настоящей работы является изучение возможности получения медно-углеродных композиционных материалов на основе продуктов электроискрового диспергирования (ЭИД) графита методом химического восстановления

Получение нанодисперсных композиционных материалов, содержащих углерод и медь, проводился следующим образом. Определенное количество продукта электроискрового диспергирования графита в спирте или воде добавляется в раствор аммиаката меди [Cu(NH<sub>3</sub>)4]<sup>2+</sup> с определенной концентрацией ионов меди. Соотношение графита и меди в растворе составляло 1:3. Затем проводился восстановление меди гидразином при 55-60°С. Полученный продукт отделялся на центрифуге, промывался до нейтральной реакции, затем этиловым спиртом и высушивался при 60°С в сушильном шкафу.

Фазовый состав синтезированного композиционного материала изучался методом рентгенофазового анализа. Дифрактограммы снимались на дифрактометре RINT-2500 HV на медном отфильтрованном излучении.

Ранее [3] показано, что при электроискровом диспергировании графита в жидкой среде происходит образование нанодисперсного графита. Поэтому нами изучены возможности получения композиционного материала, состоящего из углерода и меди на основе продуктов электроискровом диспергировании графита.

Дифрактограммы композиционных материалов, содержащих углерод и медь, представлены на рисунке 1, а их расчеты - в таблицах 1, 2.



**Рис.** Дифрактограммы композиционных материалов, содержащих высокодисперсный графит, полученный методом ЭИД в спирте (1) и воде (2), и медь.

Таблица 1
Результаты расчета дифрактограммы композиционного материала, содержащего высокодисперсный графит, полученный методом ЭИД в спирте, и медь

| № | Эксперимен- |        | Фазовый состав |       |     |      |          |       |
|---|-------------|--------|----------------|-------|-----|------|----------|-------|
|   | тальные     | данные |                |       |     |      |          |       |
|   | I           | d, Ao  | Cu             |       | CuO |      | $C_{rp}$ |       |
|   |             |        | hkl            | a, Aº | hkl | d,Aº | hkl      | d, Aº |
| 1 | 76          | 3,4373 |                |       |     |      | 002      | 3,37  |
| 2 | 36          | 2,7503 |                |       | 110 | 2.76 |          |       |
| 3 | 59          | 2,4973 |                |       | 002 | 2,52 |          |       |
| 4 | 100         | 2,1175 | 111            | 3,668 |     |      |          |       |
| 5 | 55          | 1,8323 | 200            | 3,664 |     |      |          |       |
| 6 | 36          | 1,5180 |                |       | 113 | 1,50 |          |       |
| 7 | 42          | 1,2872 | 220            | 3,640 |     |      |          |       |

Таблица 2

Результаты расчета дифрактограммы композиционного материала, содержащего высокодисперсный графит, полученный методом ЭИД в воде, и медь

| № | Эксперимен- |        | Фазовый состав |       |                   |      |          |      |  |
|---|-------------|--------|----------------|-------|-------------------|------|----------|------|--|
|   | тальные     |        |                |       |                   |      |          |      |  |
|   | данные      |        |                |       |                   |      |          |      |  |
|   | I d, Aº     |        | Cu             |       | Cu <sub>2</sub> O |      | $C_{rp}$ |      |  |
|   |             |        | hkl            | a, Aº | hkl               | d,Aº | hkl      | d,Aº |  |
| 1 | 27          | 3,4399 |                |       |                   |      | 002      | 3,37 |  |
| 2 | 27          | 2,3417 |                |       | 111               | 2,31 |          |      |  |
| 3 | 100         | 2,1127 | 111            | 3,659 |                   |      |          |      |  |
| 4 | 43          | 1,8247 | 200            | 3,649 |                   |      |          |      |  |
| 5 | 20          | 1,2830 | 220            | 3,629 |                   |      |          |      |  |

Анализ дифрактограмм композиционных материалов состоящих из продукта электроискрового диспергирования графита в спирте или воде и химически восстановленной меди показывает, что действительно в составе композиционных материалов находятся углерод и металлическая медь. На дифрактограмме композиционного материала, полученного при восстановлении меди в присутствии продуктов электроискрового диспергирования графита в спирте, имеются интенсивные линии характерные для металлической меди (рис. 1, табл. 1). На дифрактограмме имеются также линии небольшой интенсивности, которые относятся к оксиду двухвалентной меди CuO. Отсюда можно предположить о том, что в этих условиях ионы меди полностью не восстанавливаются до металла. При восстановлении ионов меди в присутствии продуктов электроискрового диспергирования графита в воде образуются металлическая медь и оксид одновалентной меди Cu<sub>2</sub>O (рис. 1, табл. 2). На обоих дифрактограммах имеются рефлексы характерные для графита. На дифрактограммах имеются также рефлексы не большой интенсивности, которые не были индентифицированы. Эти линии не относятся к чистому графиту. Мы предполагаем, что в условиях получения композиционных материалов возможно происходит изменения в структуре графита за счет интеркаляции медью, а это требует дополнительного исследования. Необходимо также отметить о том, что параметр решетки металлической меди, находящейся в составе композиционных материалов, значительно увеличен, по сравнению с чистой медью (а=0,3615 нм) (табл. 3). Это может быть связано с влиянием углерода на кристаллическую решетку меди.

### ИЗВЕСТИЯ ВУЗОВ КЫРГЫЗСТАНА № 11, 2017

Проведена оценка размеров областей когерентного рассеяния (ОКР) частиц металлической меди, находящихся в составе композита, по уширению рефлексов на дифрактограммах по формуле Шеррера-Селякова [4]:

$$d = \frac{\lambda_{Cu}}{\beta \cdot cos\theta} ,$$

где d - размер ОКР, нм;  $\lambda_{Cu}$  – длина волны излучения медного анода (0,1540 нм);  $\theta$  – угол рассеяния;  $\beta$  - физическое уширение линии на дифрактограмме

 $\beta = \frac{\omega \bullet \pi}{180} \; , \; \omega - \text{ширина дифракционного максиму-}$  ма на половине его высоты.

Результаты расчета размеров ОКР частиц меди, находящихся в составе композита, представлены в таблице 3.

Таблица 3
Параметр решетки (а) и размеры ОКР (d) частиц меди,
нахолящихся в составе композита

| палодищился в составс композита |          |                             |        |       |  |  |  |
|---------------------------------|----------|-----------------------------|--------|-------|--|--|--|
| №                               | Композит | Жидкая среда<br>ЭИД графита | а, нм  | d, нм |  |  |  |
| 1                               | C-Cu     | Спирт                       | 0,3657 | 21,5  |  |  |  |
| 2                               | C-Cu     | Вода                        | 0,3646 | 22,6  |  |  |  |

Результаты расчета размеров ОКР подтверждают образование наноразмерных частиц меди при химическом восстановлении гидразином в присутствии продуктов электроискрового диспергирования

графита (табл. 3). Размеры ОКР частиц меди составляют от 21-22 нм.

Таким образом, методом рентгенофазового анализа показаны возможности получения композиционного материала, состоящего из углерода и меди, при химическом восстановлении ионов меди гидразином в присутствии продуктов электроискрового диспергирования графита.

#### Литература:

- Павелко Н.В., Сименюк Г.Ю., Манина Т.С., Пугачев В.М., Додонов В.Г., Захаров Ю.А. Получение наноструктурированных металл-углеродных композитов на основе углеродных матриц // Вестник КемГУ, 2013, т. 3, № 3 (55). С.100-102.
- Чесноков Б.Н., Микова Н.В., Кузнецов Н.М. Приготовление металлосодержащих углеродных материалов из расширенных графитов и растворов целлюлозы // IV Междунар. конф. Перспективные полимерные композиционные материалы. Альтернативные технологии. Переработка. Применение. Экология («Композит-2007»). Саратов: Изд-во СГТУ, 2007. С. 404-407.
- Сатывалдиева Г.Э., Тойлубаев Э.К., Сатывалдиев А.С. Интеркалирование высокодисперсного порошка графита, полученного при электроискровом диспергировании графита в воде // Наука и новые технологии, 2014, №4. - С.165-167.
- Авчинникова Е.А., Воровьева С.А. Синтез и свойства наночастиц меди, стабилизированных полиэтиленгликолем // Вестник БГУ, 2013, сер.7, №3. - С. 12-16.

Рецензент: к.хим.н., профессор Молдошев А.М.