Байматова Р.Т.

ТЕМИРДИ ЖЕЗ ЖАНА НИКЕЛЬ МЕНЕН БИРГЕ Электр учкундук дисперстөөдө металлдардын катуу Эритмелеринин пайда болушу

Байматова Р.Т.

ОБРАЗОВАНИЕ ТВЕРДЫХ РАСТВОРОВ МЕТАЛЛОВ ПРИ СОВМЕСТНОМ ЭЛЕКТРОИСКРОВОМ ДИСПЕРГИРОВАНИИ ЖЕЛЕЗА С МЕДЬЮ И НИКЕЛЕМ

R.T. Baimatova

FORMATION OF SOLID SOLUTIONS OF METALS BY JOINT ELECTROSPARK DISPERSION OF IRON WITH COPPER AND NICKEL

УДК: 621.762

Темирди жез же никель менен бирге электр учкундук дисперстөөдө тиешелүү металлдардын ү-Fe менен катуу эритмелеринин пайда болушу аныкталган.

Негизги сөздөр: электр учкундук дисперстөө, темир, жез, никель, кату эритме, продукт, гексан, спирт.

Установлено, что при совместном электроискровом диспергировании железа с медью или никелем происходит образование твердых растворов соответствующих металлов с у-Fe.

Ключевые слова: электроискровое диспергирование, железо, медь, никель, твердый раствор, продукт, гексан, спирт.

It was established that the joint electric-spark dispersion of iron with copper or nickel leads to the formation of solid solutions of the corresponding metals with γ -Fe.

Key words: electrospark dispersion, iron, copper, nickel, solid solution, product, hexane, alcohol.

Ранее [1, 2] нами показано, что фазовый состав продуктов совместного электроискрового диспергирования железа с медью и никелем зависит от состава жидкой среды.

Целью настоящей работы является изучение влияния природы второго металла на образование

твердых растворов при совместном электроискровом диспергировании железа с медью и никелем в жидкой среде.

Электроискровому диспергированию подвергались электродные пары, изготовленные из железа и меди, и из железа и никеля. Электроды представляли собой стержни с размерами 5x0,5x0,5 см, а в качестве жидкой среды использовались гексан и этиловый спирт (96%). Энергия разряда составляла 0,05 Дж.

Продукты электроискрового диспергирования электродных пар представляют собой твердую фазу, которая отделяется от жидкой фазы декантацией, промывается чистым растворителем. Промытый твердый продукт высушивался до постоянного веса и изучался методом рентгенофазового анализа.

Дифрактограммы продуктов снимались на дифрактометре RINT-2500 HV на медном отфильтрованном излучении.

На рисунках 1, 2 представлены дифрактограммы продуктов совместного электроискрового диспергирования железа с медью и никелем в гексане и спирте, а результаты их расчетов представлены в таблицах 1-4.

Рис.1. Дифрактограммы продуктов совместного электроискрового диспергирования железа с медью (1) и никелем (2) в гексане.

ИЗВЕСТИЯ ВУЗОВ КЫРГЫЗСТАНА № 11, 2017

Таблица 1 Результаты расчета дифрактограммы продукта совместного электроискрового диспергирования железа с медью в гексане

№	Эксперимент.		Фазовый состав						
	да	инные							
	Ι	d, A ^o	γ-Fe(Ni)		FeNi		Fe ₃ C		
			hkl	a, Aº	hkl	d, Aº	hkl	d, Aº	
1	10	2,2464					200	2,26	
2	14	2,1433			100	2,14			
3	100	2,0831	111	3,608					
4	29	1,9910			002	1,99			
5	42	1,8038	200	3,608					
6	6	1,7068					004	1,68	

Таблица 2

Результаты расчета дифрактограммы продукта совместного электроискрового диспергирования железа с никелем в гексане

N⁰	Эксперим	иентальные	Фазовый состав					
	Дан		rr Ea(Cu) ar Ea					
	1	u, A	y-re(Cu)		u-re			
			hkl	a, A ^o	hkl	a, A ^o		
1	100	2,0913	111	3,622				
2	22	2,0255			111	2,864		
3	45	1,8105	200	3,621				
4	25	1,2800	220	3,620				

Анализ дифрактограмм показывает, что продукт совместного электроискрового диспергирования железа с медью в гексане состоит из двух фаз, а продукт электродной пары Fe-Ni состоит из трех фаз (рис.1). Основной фазой продукта электродной пары Fe-Cu является твердый раствор замещения между ужелезой и медью. Данная фаза имеет гранецентрированную кубическую решетку, характерную для меди и γ-Fe, с параметром a=3,621 A° (табл.1). Значение этого параметра больше чем значение параметра для меди (a=3,615 A°) и значительно меньше значения параметра решетки γ-Fe (a=3,656 A°). Второй фазой, по всей вероятности, является α -Fe, т.к. значение параметра решетки этой фазы (a=2,864 A°) очень близко значению параметра α -железы (a=2,866 A°).

Фазовая диаграмма системы Fe-Cu подробно изучена [3]. Согласно диаграмме состояния системы Fe-Cu, в ней существует ограниченная растворимость между металлами в твердом состоянии. Максимальная растворимость меди в железе составляет 8,3% (ат.) при 1478°С, а максимальная растворимость железа в меди – 2,84% (ат.) при 1025°С. Для железа характерен полиморфизм и оно имеет четыре кристаллические модификации (α -Fe, β -Fe, γ -Fe и δ -Fe) [4]. Из них практическое значение имеют α - и γ -модификации железа. α -Fe существует до 917°С и имеет объемноцентрированную кристаллическую (ОЦК) решетку, а γ -Fe имеет гранецентрированную кристаллическую (ГЦК) решетку и существует в интервале 917-1394°С.

В работе [5] показано образование высоко дисперсных частиц α- и γ-модификации железа при электроискровом диспергировании железа в жидкой среде. Авторы существование высокотемпературной модификации железа (γ-Fe) при комнатной температуре объясняют высокой скоростью охлаждения синтезированных частиц данной фазы в условиях электроискрового диспергирования.

Основной фазой продукта совместного электроискрового диспергирования железа с никелем, полученного в гексане, является твердый раствор никеля в γ -Fe [γ -Fe(Ni)], которая имеет гранецентрированную кубическую (ГЦК) решетку, характерную для γ -Fe, с параметром 3,608 A° (рис.1, табл.2). Это значение параметра кристаллической решетки твердого раствора меньше, чем значение параметра кристаллической решетки для γ -Fe (3,656 A°) и больше, чем значение параметра решетки для никеля (3,524 A°). Второй фазой является интерметаллид FeNi с плотноупакованной гексагональной кристаллической решеткой, где содержание никеля составляет 30% (вес.). Третья фаза представляет собой карбид железа Fe₃C.

Рис. 2. Дифрактограммы продуктов совместного электроискрового диспергирования железа с медью (1) и никелем (2) в спирте.

ИЗВЕСТИЯ ВУЗОВ КЫРГЫЗСТАНА № 11, 2017

Таблица 3

Результаты расчета дифрактограммы продукта совместного электроискрового диспергирования железа с медью в спирте

№	Экспери-		Фазовый состав					
	ментальные							
	да	нные						
	Ι	d, Aº	γ-Fe(Cu)		α-Fe(Cu)		Fe ₃ O ₄	
			hkl	a,Aº	hkl	a,Aº	hkl	d,Aº
1	41	2,5190					111	2,51
2	100	2,0932	111	3,625				
3	62	2,0359			110	2,879		
4	52	1,8126	200	3,625				
5	35	1,6112					511	1,61
5	33	1,4738					440	1,48
6	30	1,2809	220	3,623				

Таблица 4

Результаты расчета дифрактограммы продукта совместного электроискрового диспергирования железа с никелем в спирте

№	Эксперимен-		Фазовый состав				
	тальни	ые данные					
	Ι	d, Aº	γ-Fe(Ni)			Ni	
			hkl	a, Aº	hkl	a, A ^o	
1.	100	2,0785	111	3,600			
2.	46	2,0333			111	3,522	
3.	46	1,7979	200	3,596			

Продукт совместного электроискрового диспергирования железа с медью в спирте состоит из трех фаз (рис. 2). Основной фазой является твердый раствор γ -Fe(Cu) с ГЦК-решеткой (табл. 3). Вторая фаза имеет ОЦК-решетку с параметром а=2,879 A°, поэтому данная фаза представляет собой твердый раствор меди в α -Fe. Третьей фазой данного продукта является оксид железа Fe₃O₄. Образование оксида железа связано с тем, что в условиях искрового разряда происходит разложение молекул спирта. При разложении молекул спирта, наверное, образуется химически активный кислород, который взаимодействует железом.

Продукт совместного электроискрового диспергирования железа с никелем в спирте состоит из двух фаз (рис. 2, табл. 4). Основной фазой данного продукта является твердый раствор никеля в γ-Fe [γ-Fe(Ni)]. Значение параметра решетки данной фазы составляет а=3,598 A°. Вторая фаза также имеет ГЦК-решетку с параметром а=3,522 A°. Отсюда можно предположить о том, что данная фаза является практически чистым никелем (a=3,524 A°).

Согласно диаграмме состояния системы Fe-Ni в ней существует непрерывный ряд твердых растворов между γ -Fe и никелем, а между α -Fe и никелем существует ограниченная растворимость [3]. В системе Fe-Ni возможно образование интерметаллидов.

Таким образом, методом рентгенофазового анализа установлено, что при совместном электроискровом диспергировании железа с медью или никелем, не зависимо от природы второго металла в электродных парах, происходит образование твердых растворов соответствующих металлов с γ-Fe.

Литература:

- Байматова Р.Т., Сатывалдиев А.С., Мурзубраимов Б.М. Влияние природы жидкой среды на фазовый состав продуктов совместного электроискрового диспергирования железа и меди// Наука, новые технологии и инновации Кыргызстана, 2016, №7, с.111-113.
- Байматова Р.Т., Сатывалдиев А.С., Осмонканова Г.Н. Фазовый состав продуктов совместного электроисрового диспергирования железа и никеля // Наука, новые технологии инновации Кыргызстана, 2016, №12. - С.63-65.
- Диаграмма состояния двойных металлических систем: Справочник: В 3т.: Т.2/Под общ. ред. Н.П. Лякишева. – М.: Машиностроение, 1997. - 1024с.
- Химическая энциклопедия: В 5 т.; т.2 / Редколл.: Кунянц И.Л. (гл. ред.) и др. - М.: Сов. энцикл., 1990. - 671 с.
- Лопатько К.Г., Олишевский В.В., Маринин А.И., Афтандилянц Е.Г. Образование наноразмерной фракции металлов при электроискровой обработке гранул // Электронная обработка материалов, 2013, 49(6). - С.80-85.

Рецензент: к.хим.н., доцент Насирдинова Г.К.