ИЗВЕСТИЯ ВУЗОВ, № 2, 2015

Насирдинова Г.К., Мамбеталиева Б.Р., Макамбаева Ы.Ж., Сатывалдиев А.С.

СИНТЕЗ НАНОРАЗМЕРНЫХ КАРБИДНЫХ СОЕДИНЕНИЙ ВОЛЬФРАМА МЕТОДОМ ЭЛЕКТРОИСКРОВОГО ДИСПЕРГИРОВАНИЯ

Насирдинова Г.К., Мамбеталиева Б.Р., Макамбаева Ы.Ж., Сатывалдиев А.С.

ВОЛЬФРАМДЫН НАНОӨЛЧӨМДӨГҮ КАРБИДДИК КОШУЛМАЛАРЫН ЭЛЕКТР УЧКУНДУК ДИСПЕРСТӨӨ МЕТОДУ МЕНЕН СИНТЕЗДӨӨ

G.K. Nasirdinova, B.R. Mambetalieva, Y.Z. Makambaeva, A.S. Satyvaldiev

SYNTHESIS OF NANOSIZED TUNGSTEN CARBIDE COMPOUNDS BY ELECTRO SPARK DISPERSION

УДК: 546.261

Изучение фазового состава и дисперсности продукта электроискрового диспергирования вольфрама показывает перспективность данного метода для получения нанодисперсных карбидов вольфрама.

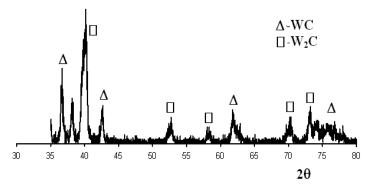
Ключевые слова: нанодисперсные карбиды, вольфрам, электронный микроскоп.

Вольфрамдын электр учкундук дисперстөө продуктусунын фазалык составын жана дисперстүүлүгүн изилдөө ушул методдун вольфрамдын нанодисперстүү карбиддерин алуу үчүн келечектүүлүгүн көрсөттү.

Негизги сөздөр: нанодисперстүү карбиддер, вольфрам, электрондук микроскоп.

The study of the phase composition and dispersion of electro spark dispersion of tungsten shows prospectivity of this method for nano-dispersed tungsten carbides acquisition.

Key words: nanosized carbides, tungsten, electron microscope.


Карбиды вольфрама самые тугоплавкие и твердые из всех известных соединений. Благодаря этому в современной технике они широко используются в производстве конструкционных и инструментальных материалов, способных работать при высокой температуре, в агрессивных средах и при больших нагрузках. Карбид вольфрама, отличающийся термической стабильностью механических свойств, находит наибольшее применение в производстве износостойких твердых сплавов, составляющих основную часть всех инструментальных материалов.

В настоящее время одним из быстро развивающихся направлений по созданию новых материалов, обладающих особым набором эксплуатационных характеристик, является использование наноразмерных карбидов. Применение нанодисперсных порошков карбидов вольфрама должно привести к существенному улучшению свойств тугоплавких материалов и характеристик изделий из них. Производство новых материалов на основе нанокарбидов вольфрама требует поиска новых и развития существующих технологий их синтеза. Одним из перспективных методов получения карбидов нанодисперсном состоянии может стать метод электроискрового диспергирования [1-3].

Для синтеза карбидов вольфрама методом электроискрового диспергирования использована лабораторная установка с RC-генератором. В качестве электродов использованы стержни из вольфрама, а в качестве жидкой среды – гексан.

Продукт диспергирования вольфрама находится в составе твердой фазы, которая отделялась от жидкой фазы декантацией и промывалась спиртом и высушивалась при 90-100°C.

Фазовый состав продукта изучался методом рентгенофазового анализа с использованием дифрактометра RINT-2500 HV. Дисперсность продукта установлена методом электронной микроскопии. Микрофотографии продукта сняты на эмиссионном сканирующем электронном микроскопе JOEL JSM-7600F. На рис. 1 представлена дифрактограмма продукта электроискрового диспергирования вольфрама в гексане, а результаты ее расчета - в таблице.

Рис. 1. Дифрактограмма продукта электроискрового диспергирования вольфрама в гексане

Таблица - Результаты расчета дифрактограммы продукта электроискрового диспергирования вольфрама в гексане

№	Эксперимен.		Фазовый состав						
	Да	анные							
	I	d,A°	W_2C			WC			
			hkl	a, Aº	c, Ao	hkl	a, Aº		
1	45	2,4435				111	4,232		
2	35	2,3512	002		4,702				
3	100	2,2421	101	2,982	4,703				
4	27	2,1156				200	4,231		
5	18	1,7344	102	2,982	4,703				

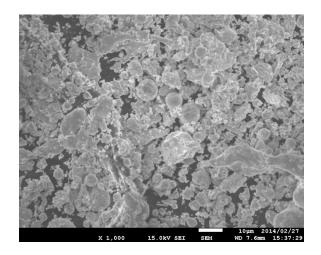
ИЗВЕСТИЯ ВУЗОВ, № 2, 2015

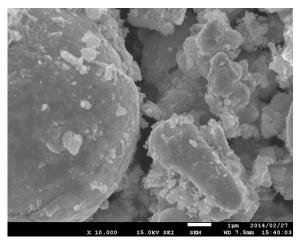
6	20	1,4946				220	4,227
7	14	1,4864	110	2,973			
8	23	1,3387	103	2,979	4,705		
9	25	1,2908	200	2,981			
10	19	1.2753				311	4,230
11	16	1,2527	112	2,983	4,701		
12	16	1,2397	201	2,983	4,701		

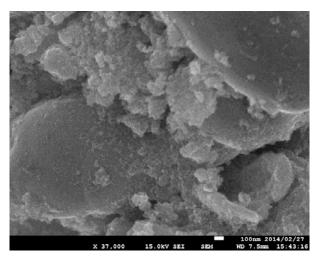
дифрактограммы Анализ показывает. продукт электроискрового диспергирования вольфрама в гексане состоит из двух фаз. На дифрактограмме имеются линии характерные для полукарбида вольфрама (W2C) и кубического монокарбида вольфрама (β-WC). Результаты расчета диффрактограммы подтверждают эти предположения. Действительно, полукарбид вольфрама имеет гексагональную решетку с параметрами а =2,980A° и c=4,702A°, а фаза β-WC имеет гранецентрированную кубическую (ГЦК) решетку с периодом 4,230A°. Согласно литературным данным [4] в системе W-C существуют две карбидные соединения - монокарбид WC и полукарбид W2C вольфрама. Эти карбиды имеют несколько структурных модификаций, устойчивых в разных температурах и концентрациях. У монокарбида вольфрама существуют низкотемпературная α -WC (или δ -WC) и высокотемпературная β-WC (или γ-WC_{1-х}) модификации. Наиболее стабильной в системе W-C является низкотемпературная модификация монокарбида вольфрама, образующаяся из расплава и твердого углерода в результате перитектической реакции при 2600°С. Карбиды вольфрама, как и карбиды переходных металлов, относятся к фазам внедрения, т.е. в атомные промежутки плотноупакованной решетки атомов вольфрама внедрены меньшие размером атомы углерода. Низкотемпературная модификация монокарбида вольфрама имеет простую гексагональную кристаллическую решетку, относящейся к

пространственной группе PG m $2(D_{3h}^1)$. По данным авторов [4] параметры элементарной ячейки данной карбидной фазы составляет $\alpha=0,2906$ нм и с = 0,2837 нм. В кристаллической решетке α -WC атомы вольфрама и атомы углерода образуют простые гексагональные подрешетки, при этом атомы углерода располагаются в центрах тригональных призматических междоузлий подрешетки вольфрама [4]. α -WC не имеет область гомогенности [4]. Высокотемпературная модификация монокарбида вольфрама β -WC существует при температуре выше 2525° C [5]. Данная карбидная фаза впервые обнаружена авторами [6] и они принимали ее за модификацию полукарбида вольфрама. Высокотемператур-

ная модификация монокарбида β-WC имеет гранецентрированную кубическую (ГЦК) кристаллическую решетку, относящейся к пространственной


группе Fm $\frac{1}{3}$ m (O $\frac{5}{n}$), и структурой B1 [4]. Все октаэдрические междоузлии ГЦК-подрешетки вольфрама этой фазы могут быть заполнены атомами углерода. На фазовой диаграмме системы W-C кубический монокарбид β -WC находится в области составов между полукарбидом W $_2$ C и гексагональной низкотемпературной модификацией монокарбида α -WC и является нестехиометрическим β -WC $_{1-x}$, где $0 \le x \le 0.41$ [5]. В работах [7,8] указано, что кубический монокарбид вольфрама существует при высоких температурах и его можно сохранить с применением сверхскоростной закалки или малыми (менее 1%ат.) добавками α -металлов IV группы.


Полукарбид вольфрама W₂C в зависимости от температуры существует в трех модификациях: β- W_2C , β' - W_2C и β'' - W_2C . Эти модификации отличаются по степени упорядоченности атомов углерода в октаэдрических пустотах плотнейшей упаковки атомов вольфрама. В полукарбиде атомы вольфрама образуют металлическую гексагональноплотноупакованную (ГПУ) - подрешетку, половина октаэдрических междоузлий которой занята атомами углерода. Высокотемпературная модификация β-W₂C стабильна в температурном интервале от 2670-2720К до температуры плавления 3000-3050К и имеет гексагональную структуру типа L - '3, относящейся к пространственной группе Р63/ттс (D_{6h}^{4}) , с неупорядоченным размещением атомов углерода и структурных вакансий в неметаллической подрешетке. Параметры элементарной ячейки этого карбида характеризуются следующими значениями a = 0.2996 нм и c = 0.4724 нм. β -W₂C имеет область гомогенности от $WC_{0,34}$ до $WC_{0,52}$ [4].


Результаты рентгенофазового анализа показывают, что в условиях электроискрового разряда осуществляется реакция карбидообразования в результате взаимодействия высокодисперсных частиц вольфрама и молекул гексане под действием высоких температур искрового разряда. Высокоскоростная закалка образовавшихся частиц карбидов способствует сохранению высокотемпературной модификации монокарбида вольфрама (β-WC).

На рис. 2 представлены микрофотографии нанопорошков карбидов вольфрама, синтезированных при электроискровом диспергировании вольфрама в гексане.

ИЗВЕСТИЯ ВУЗОВ, № 2, 2015

Рис.2. Микрофотографии карбидов вольфрама, синтезированных методом электроискрового диспергирования, при различных масштабах увеличения

На микрофотографиях карбидов вольфрама при увеличениях 1000 и 10000 раза хорошо видны агрегаты различных размеров и форм, состоящих из, достаточно, дисперсных частиц. На микрофотографии с увеличением 37000 раза, т. е. в масштабе 100 nm хорошо видны отдельные частицы сферической формы с размерами менее 10 nm. Отсюда можно предположить о том, что первичные частицы карбидов вольфрама, синтезирование методом электроискрового диспергирования нанодисперсными, которые подвергаются коагляции с образованием агрегатов более крупных размеров. Необходимо отметить достаточно узкое распределение синтезированных первичных наночастиц карбидов металлов по размерам.

Таким образом, методами рентгенофазового анализа и электронной микроскопии показано, что метод электроискрового диспергирования является эффективным методом получения нанодисперсных карбидов вольфрама в жидкой среде, т.к. формирование наночастиц в этих условиях происходит с высокой скоростью при больших градиентах температуры и давления.

Литература

- Насирдинова Г.К., Сатывалдиев А.С. Синтез наноразмерных карбидов вольфрама и титана в условиях искрового разряда // Наука и новые технологии, 2010, №3. С.145-147.
- 2. Андриевский Р.А. Получение и свойства нанокристаллических тугоплавких соединений //Успехи химии, 1994, т.63, №5. С. 431-448.
- 3. Пячин С.А., Пугачевский М.А. Новые технологии получения функциональных материалов: лазерная абляция, электроискровое воздействие, Хабаровск, 2013. 38 с.
- 4. Курлов А.С., Гусев А.И. Карбиды вольфрама и фазовая диаграмма системы W-С //Неорганические материалы, 2006, т.42, №2 С. 156-163.
- 5. Самсонов Г.В., Витрянюк В.К., Чаплыгин Ф.Н. Карбиды вольфрама.-К.: Наук. думка, 1974 175 с.
- Goldschidf H.J., Brand J.A. The Tungsten-Rich Region of the System Tungsten-Carbon //J.Less - Common Metals, 1963, v.5, №2. - P. 181-194.
- 7. Великанова Т.Я., Еременко В.Н., Бондар А.А. и др. Влияние легирования на структуру и свойства литых сплавов WC_{1-х} //Порошковая металлургия, 1981, №2. С. 53 58.
- 8. Marios D. Demerzion, Nasr M.Ghoniem, Adrienne S.Lavine. Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten −carbon system //Acta Met., 2002, v.50, №6. P. 1421 1432.

Рецензент: к.х.н., доцент Жаснакунов Ж.К.