Зулпуев А.М., Насиров М.Т.

КӨП КАБАТТУУ ИМАРАТТАР ЖАНА ИРИ ИМАРАТТАРДАГЫ ДАЯРДАЛГАН ТЕМИР-БЕТОН ЖАБДУУ ПЛИТАЛАРЫНЫН ЖҮК КӨТӨРҮМДҮҮЛҮГҮ ЖАНА ИЙИЛГИЧТИГИ

Зулпуев А.М., Насиров М.Т.

ПРОЧНОСТЬ И ПЕРЕМЕЩЕНИЯ СБОРНЫХ ЖЕЛЕЗОБЕТОННЫХ ПЛИТ ПЕРЕКРЫТИЙ МНОГОЭТАЖНЫХ ЗДАНИЙ И СООРУЖЕНИЙ

A.M. Zulpuev, M.T. Nasirov

DURABILITY AND DIPLACEMENTS OF THE COMBINED REINFORCED CONCRETE BARS OF THE COVERINGS IN MULTI-STORIED BUILDINGS

УЛК: 624.012.45

Бул макалада төмөнкү маселелер каралган: дискреттүү эсептөө моделинин топтолгон деформациялар методу, статикалык белгисиз стержендик жана тегиздик системасын эсептөө методунунда бирден-бир сандуу бөлүгү катары эсептелет.

В данной статье рассмотрены следующие вопросы: метод сосредоточенных деформаций как разновидности дискретных расчетных моделей, является одним из численных методов расчета статически неопределимых стержневых и плоскостных систем.

This article deals with the method of concentrated deformations as a kind of discrete calculating models which is one of numeric methods of calculating the statically non-defined rod and plane systems.

В настоящее время в соответствии с ее ориентацией рассматриваются основные, наиболее популярные конструктивные системы: каркасные, плоскостные и комбинированные (рис.1). Используемый в данном исследовании метод сосредоточенных деформаций реализован таким образом, что в нем нет различия расчетов между каркасными и плоскостными элементами многоэтажных зданий и сооружений.

В современном этапе числится следующая классификация расчетных моделей для несущих конструкций многоэтажных зданий и сооружений: континуальная; дискретно-континуальная; дискретная.

В несущие конструкций многоэтажных зданий и сооружений континуальные модели, из-за особенности моделируемых несущих систем не получили широкого распространения. В континуальные модели необходимо производить расчет двумя способами, сначала привести континуализируя дискретные признаки несущей системы, а затем вновь дискретизируя полученные результаты. В связи этом континуальные модели в расчетах несущих конструкций многоэтажных зданий и сооружений применяется реже, отдавая предпочтение дискретноконтинуальной и дискретной моделям.

Таким образом в расчетах несущих конструкций многоэтажных зданий и сооружений широко масштабно используется дискретно-континуальная модель. К расчету несущих конструкций многоэтажных зданий и сооружений, впервые дискретно-континуальная расчетная модель в форме составных стержней с применением метода сосредоточенных деформаций была использована профессором А.Р. Ржаницыным [3], далее применительно к железобетонным стержневым и плоскостным элементам развита доцентом М.И. Додоновым [1] и профессором А.М. Зулпуевым [2].

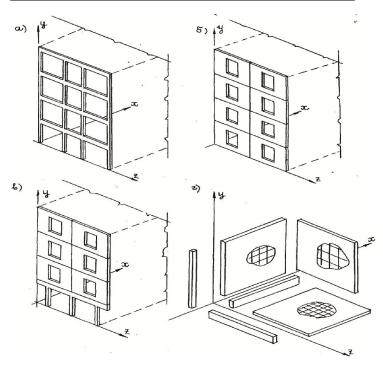


Рис. 1. Конструктивные элементы многоэтажных зданий:

a) – каркасная, δ) – панельная, ϵ) – комбинированная, ϵ) – стержневые и плоскостные элементы в несущих системах.

В связи этом, дискретно-континуальная расчетная модель оказалась довольно приспособленной и перспективной; его потенциальные возможности, вероятно, будет формироваться и в будущем. Кроме того, можно предполагать, что дискретно-континуальные расчетные модели по критерию формирования вычислительной техники все плотнее заменяться дискретными расчетными моделями вследствие большей общности, универсальности и хорошей математической обеспеченности.

В настоящее время большими усилиями многих ученых, исследованы основные показатели для дискретных расчетных моделей несущих систем многоэтажных зданий и сооружений. На основе данных дискретных расчетных моделей несущих систем многоэтажных зданий и сооружений, разработаны несколько поколений программное обеспечение для вычислительной техники.

Таким образом, предлагаемый метод сосредоточенных деформаций как разновидности дискретных расчетных моделей, является одним из численных методов решения расчета статически неопределимых стержневых и плоскостных систем.

Идея метода сосредоточенных деформаций (МСД) состоит в том, что исходный стержень делится на элементы, по плоскостям раздела между которыми сосредоточиваются деформации прилегающих элементов. По-другому можно сказать так: исходный деформируемый стержень делится на элементы, превращаемые в жесткие и соединенные между собой податливыми связями, характеристики податливости (жесткости) которых должны сохранять свойства исходного стержня.

Основным достоинством метода сосредоточенных деформаций является — простота формирования матриц жесткости сечений, элементов, стержневых систем из них; при этом элементами матриц жесткости сечений служат балочные жесткостные характеристики (например: изгибная, осевая и т.д.), сохраняющие свои упругопластической стадии работы; причем такие же жесткостные характеристики распространяются и на случай плоского напряженного состояния и изгиба в двух направлениях для упруго и неупруго работающих железобетонных плит.

Вторым достоинством метода сосредоточенных деформаций является - четкое деление сложного напряженно-деформированного состояния на элементарные составляющие (например: изгиб, сжатиерастяжение и т.д.).

Третьем достоинством метода сосредоточенных деформаций является - простота учета податливых соединений между элементами или в опорных устройствах, это имеет значение при расчете сборномонолитных или составных конструкций.

Четвертым достоинством метода сосредоточенных деформаций является - использование гипотезы плоских сечений. Это обстоятельство позволяет резко уменьшить число элементов метода сосредоточенных деформаций по сравнению с обычным применяемым числом метода конечных элементов.

К недостатку метода сосредоточенных деформаций можно отнести то, что, например, для упругих стержней требуется разбивка пролета на некоторое число участков, в то время как в обычном варианте

метода конечных элементов стержень вводится в расчет с полной длиной.

Однако метод сосредоточенных деформаций ориентирован прежде всего на расчет элементов с учетом реальных диаграмм деформирования бетона и арматуры, в этом случае необходимо для учета меняющейся по длине жесткости делить стержни также и при обычном варианте метода конечного элемента; поэтому в этом случае метод сосредоточенных деформаций и обычный метод конечных элементов близки между собой в смысле необходимой степени дискретизации. Вместе с тем при учете нелинейности железобетонных стержней в обычном методе конечных элементов элементы матрицы жесткости приходится отыскивать в центральных осях, меняющих главных положение в зависимости от уровня напряженнодеформированного состояния. В методе сосредоточенных деформаций матрицы жесткости элементов строятся непосредственно на основе матриц жесткости сечений в неизменных координатных осях без перехода к центральным осям сечений.

Это обстоятельство свидетельствует о значительном достоинстве метода сосредоточенных деформаций.

Сборные железобетонные плит перекрытий многоэтажных зданий и сооружений, входят как части плоскостных элементов несущих систем многоэтажных зданий и сооружений.

На основе метода сосредоточенных деформаций (рис. 2) задача по расчету напряженно-деформированного состояния изгибаемой сборной железобетонной плит перекрытий многоэтажных зданий и сооружений решается в следующем порядке:

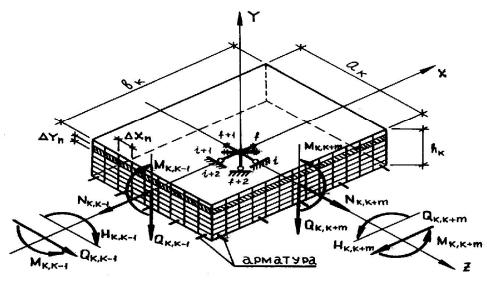


Рис. 2. Расчетная модель метода сосредоточенных деформаций

- 1. На основе результатов экспериментальных данных устанавливается взаимосвязь между напряжениями и деформациями в форме «одноосных» диаграмм с учетом напряженно-деформированного состояния бетона и арматуры в условиях изгиба сборных железобетонных плит перекрытий много-этажных зданий и сооружений;
- 2. Из компонента элементов метода сосредоточенных деформаций учитываются установленные законы распределения деформаций сжатия (растяжения) и сдвига по плоскостям сосредоточенных деформаций;
- 3. Составляются согласно уравнение Холецкого, связывающие перемещения по граням элемента метода сосредоточенных деформаций и соответствующими деформациями;
- 4. По плоскостям метода сосредоточенных деформаций определяются и устанавливаются внутренние усилия $\{F\}$;
- 5. Формируются и составляются матрица внешней жесткости $[\mathfrak{I}]_k$ для κ го элемента метода

сосредоточенных деформаций;

- 6. Определяются и составляются элементная матрица внутренней жесткости $[K]_k$, а затем матрица внутренней жесткости [K] элемента для всей рассчитываемой системы в целом;
- 7. Составляются матрица уравнения равновесия $[A]_k$ для κ го элемента метода сосредоточенных деформаций и всей системы [A], а затем определяются матрица внешней жесткости,

$$[R] = [A] \cdot [K] \cdot [A]^{T};$$

- 8. Сформировываются, и подсчитывается система уравнений равновесия метода перемещений с числом неизвестных 6·m·n;
- 9. Из решения системы алгебраических уравнений подсчитываются прочности и перемещения элементов метода сосредоточенных деформаций (по три линейных и три угловых на каждый элемент);
- 10. На основе диаграммы деформирования для бетона и арматуры «напряжения-деформации», обобщенные секущие модули деформаций вычисляется и по ним формируется матрицы внутренней жесткости

[K], матрицы внешней жесткости [R] и затем вновь повторяется решение при заданном векторе внешних сил с проверкой сходимости итерационного процесса.

Данное условие можно представить в виде

$$(\lambda_{i+1} - \lambda_i)/(\lambda_{i+1} + \lambda_i) \le |\beta| \tag{1}$$

где: λ_i и λ_{i+1} - элементы вектора деформаций смежных

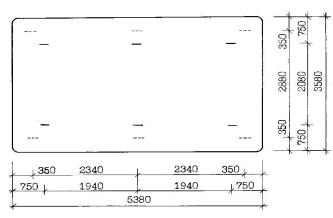
i - ой и (i+1) - ой итерациях;

β - некоторое небольшое число;

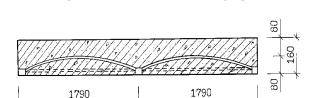
11. После достижение стабилизации итерационного процесса по условию (1) окончательно

определяются прочности и перемещения, взаимные смещения и внутренние усилия для всех элементов метода сосредоточенных деформаций, опорные реакции несущих систем, т.е. сборной железобетонной плит перекрытий многоэтажных зданий и сооружений и т.д., которые выводятся на печать.

На основе метода сосредоточенных деформаций, разработана и реализована программа «MSD» для расчета на ЭВМ сборной железобетонной плит перекрытий, учитывающей особенности их работы в многоэтажном здании и сооружений (рис. 3).


Рис. 3. Блок-схема программы «MSD».

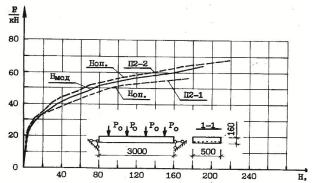
Также проведена экспериментальная работа, основная цель проверки заключалась в оценке ее прочности и жесткости, а также совершенствования конструктивных решений и проверки технологич-


ности изготовления сборных железобетонных плит перекрытий. Сборные железобетонные плит перекрытий, в отличие от выпускаемых на заводе сборных железобетонных плит перекрытий, были

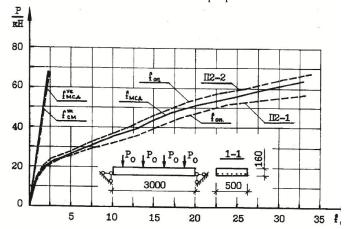
изготовлены с изменением монтажных петель и совершенствование канала для проводки электрических сетей (рис. 4 и 5).

В основном сборные железобетонные плит перекрытий с толщиной 160 мм изготавливалась на заводских условиях в горизонтальном положении, что при распалубке и подъема конструкций подвергало к преждевременному трещинообразованию в конструкциях. В отношения этого для предотвращения преждевременного образования трещин, нами предложено трансформация проектного положения монтажных петель на расстоянии 750 мм от кромки плиты в продольном и поперечном направлениям.

------ существующие монтажные петли
—— предложенные монтажные петли
Рис. 4. Схема расположения монтажных петель
сборных железобетонных плит перекрытий


3580

существующий каналообразователь предложенный каналообразователь


Рис. 5. Схема расположения каналов электропроводки сборных железобетонных плит перекрытий

В результате установлено действие нормальных усилий в пределах h/4 точки по высоте сечений от нижних частей конструкций (рис. 6). Перемещений сборных железобетонных плит перекрытий, в середине пролета получено хорошее соответствие экспериментальных данных с теоретическими результатами (рис. 7). При этом расхождение составляет в пределах 5,0 - 18,6 %.

Рецензент: д.т.н., профессор Маруфий А.Т.

Рис. 6. Изменение нормальных усилий сборных железобетонных плит перекрытий

Рис. 7. Изменение перемещение в середине пролета сборных железобетонных плит перекрытий

Максимальная нагрузка, достигнутая в процессе постепенного увеличения, в процессе расчета на вычислительные технике по программе "MSD" оказалась равной $Q=26,12~\mathrm{kH/m^2}$, что отличается от опытной $Q=25,76~\mathrm{kH/m^2}$ на 1,4%, а также определенной по методу предельного равновесия $Q=24,11~\mathrm{kH/m^2}$ на 8,4~%.

Выводы

Следовательно, расчеты по программе «MSD» сборных железобетонных плит перекрытий, показали, что при обеспечении реальных условий закрепления на опорах сборных железобетонных плит перекрытий многоэтажных зданий и сооружений с монолитными стенами учет нормальных усилий увеличивает несущую способность в 2,5-3,5 раза и жесткость в 2-3 раза.

Список использованной литературы:

- Додонов М.И. Расчет изгибаемых пластин методом сосредоточенных деформаций//Строительная механика и расчет сооружений. – 1986. – № 2. – С. 22–25.
- Зулпуев А.М. Расчет изгибаемых плитных элементов и систем из них с учетом нелинейной работы по методу сосредоточенных деформаций//Бетон и железобетон. – 2005. – № 2. – С. 14–17.
- Ржаницын А.Р. Расчет сплошных конструкций методом упругих сосредоточенных деформаций // Строительная механика и расчет сооружений. 1980. № 5. С. 15–20.