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В этой статье рассмотрены исследования свобод-
ных линейных колебаний маятника сейсмической модели с 
достаточно низкой скоростью в достаточно малой 
области пространства вокруг его стабильного положения 
равновесия (θ = ψ = φ = 0). Исследование было проведено в 
модифицированных координатах Эйлера. Уравнения дви-
жения и другие отношения вне сил считаются равными 
нулю,члены второго и более высокого порядка пренебречь.  

In this article study of free linear oscillations of the 
pendulum seismic model with a sufficiently low speed in a 
sufficiently small spatial region around its stable equilibrium 
position (θ = ψ = φ = 0). The study was conducted in the 
modified Euler coordinates. The equations of motion and other 
relationships outside forces assumed to be zero, deterred 
members of the first order, the members of the second and 
higher order neglected.  

Hamilton’s equations to have a symmetric 
pendulum in the modified coordinate system, according 
to [1], will be as follows: 
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where the Hamiltonian H * expressed in terms of the 
momenta of the natural system as: 
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Here 

P , 


P , 


P  – the generalized momenta of 

the natural system  
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generalized forces and can be represented as: 
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F , F , F defined by the relations (4)                       
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(4) 
Investigate the free linear oscillations of the 

pendulum seismic model with a sufficiently low speed in 
a sufficiently small spatial region around its stable 
equilibrium position (θ = ψ = φ = 0) [1,2]. The study will 
be carried out in the modified Euler coordinates. The 
equations of motion and other relations (1) – (4) we put 
the external force equal to zero, and retain members of 
the first order, neglecting terms of second and higher 
order. From these relations we eliminate the generalized 
momenta. 

As a result, we obtain a system of equations of the 
second order with respect to the angular coordinates: 

 
(5) 
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As can be seen from (5) the angular coordinate 
system (ψ, θ, φ) is the main. Each main coordinate is 
described by its equation independently of the other 
angular coordinates. In the linear approximation, the 
exchange of energy between the degrees of freedom 
occurs. 

 
Consider own sustained oscillations, which are 

described by the system of equations: 
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Relations (6) are well-known expressions for the 
vertical and torsional oscillations of the pendulum. For 
symmetric pendulum n1=n2=n. Using data about the 
model pendulum (pendulum, located at the station 
"Medeo" [3]), we estimate the natural frequencies and 
periods of linear oscillations of the pendulum: 
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That is the order of the cyclic frequency of 
precession and nutation oscillations of hertz, and 
torsional vibration - millihertz. Accordingly, the periods 
of precession and nutation oscillations are seconds and 

torsion - tens of minutes, 
3

1

3 106,7 
n

n
«1. 

Note that the oscillations described by the system 
of equations (7), are harmonic oscillations. The solution 
of equations (7), using the initial conditions can be 
written as: 

)cos()( 111 etnAt  , )cos()( 222 etnAt  , 

)cos()( 333 etnAt  ,                (8) 

where the amplitudes А1, А2, А3, and the initial 
phases of е1, е2, е3are defined as: 

(9)               

Trajectory, which describes the projection of the 
center of mass of the pendulum on a horizontal plane 
(oξζ) describes the relations [1,2]: 

)cos( 22020 etnLALÑ   , 

)cos( 11010 etnLALÑ   .                (10) 

Consequently, the pendulum moves so that the 
projection of its center of mass on the horizontal plane 
describes a Lissajous curve, and it performs torsional 
oscillation around the axis OZ. If the frequency ratio 
n1/n2 is a rational number, then the Lissajous figures - 
closed curves; if not, the Lissajous curves - make, and 
the pendulum will never return to the original point. If 
n1= n2 (symmetric pendulum), the Lissajous figures are 
in the shape of an ellipse, and the projection onto the 
horizontal plane of oscillation will be elliptically 
polarized. If А1=А2, the oscillations will be circularly 
polarized. If the phase difference е2–е1=(2k+1)π/2 (k = 0, 
1, 2, …), the ellipse degenerates into a line segment, 
and the vibrations are plane-polarized (linearly 
polarized), and the pendulum will oscillate a fixed 
vertical plane and twisted around its axis. Since the 
design of the pendulum such that JxJy and therefore, 
n1n2, then the oscillations are close to elliptically 
polarized, but the path will, in general, not closed. 
Fluctuations are linearly polarized for a symmetric 
pendulum (see. (10)), when the initial conditions are 

related by
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Multiply the first equation (7) by , the second – 

on


 , the third – on


 . Due to the current and integrate 

over time. Obtain the law of conservation of the total 
energy Е of a conservative system: 

   

,           (11)  

where the first term in parentheses – the kinetic energy, 
the second – the potential energy of the system, which 
consists of a potential energy due to gravity and the 
force of elasticity of the filament. Moreover, it will be 
the law of conservation of the total energies of nutation, 
precession and rotational motions: 

     

(12)  

Note  that  for  a  symmetric  pendulum when  
А1 = А2, е1 – е2 = (2k+1)/2, (6) it follows that 

const 22  , and then the cosine of the angle of 

the thread of the pendulum with the vertical axis 
3оconstant. Consequently, the pendulum in this case 
makes a conical motion and twists around the axis OZ. 

Let us pass to the consideration of the damped 
oscillations of the pendulum, to which we turn to the 
equations (5). Consider, for example, the first equation 
(5). For the rest of equations (5), the results are similar. 
Solutionofthefirstequation (5) intheform: 

tСe  .                                                     (13)  
Substituting (13) into the first equation (5), we 

obtain the characteristic equation: 

02 2
10

2  nk  ,                                   (14)     

whose decisions: 

12,1 ikk  , 
2
0

2
11 knk  ,                (15)               

with the proviso that n1>k0. The real part of λ is the 
damping factor, and the imaginary part of λ is the natural 
frequency of oscillation, with k1<n1. The value of the 
natural frequency of the damped oscillations k1decreased 
due to the forces of friction. 

When n1>k0solution of the first equation (5) can 
be written as: 
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)cos()( 111
0 etkeAt tk   ,                      (16) 

where the amplitude А1 and phase shift are determined 
from the initial conditions: 
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Conditional period Т1, the logarithmic decrement 
q1and the relaxation time τ of damped oscillations are 
defined as: 
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where N1– number of oscillations, after which the 
amplitude is reduced by a factor e, and τ1– time required 
for this. When n1<k0 coefficients λ1, λ2 are real and 
negative, so that the motion will be aperiodic with two 
damping coefficients. The rate of change of energy, 
similar to (11), (12), for the damped oscillations take the 
form: 

(19)    

Where Ф, Фθ, Фψ, Фφ – power dissipative forces and the 
corresponding power dissipative forces on the angular 
coordinates. Note that the exchange of energy between 
the degrees of freedom for the damped oscillations of the 
linear system does not occur. 

We estimate the conditional oscillation periods Т1, 
Т2, Т3, logarithmic decrement q1, q2, q3, the relaxation 
oscillation τ1 = τ2 = τ3 = τ for the model of the pendulum 
by the damping coefficient k0=0,2MHz, which belongs 
to the practical range of operating seismic pendulum [4], 
leaving the other parameters the same pendulum. 
Relaxation time for all the oscillations is the same: 

0

1

k
 = 1 hour 23 min 33 sec; 

the other parameters have the following numerical 
values: 

 21 TT 2,45sec, 3T =5,375 min, 

 21 NN 2041, 3N 16, 

 21 qq 0,00049, 3q  0,0625. 

As can be seen from the above estimates, 
conditional periodsТ1, Т2, Т3, do not differ from the 
corresponding periods of sustained oscillations, due to 
the smallness of the damping coefficient. Logarithmic 
decrement for torsional vibrations about 127,5 times 
higher than the corresponding logarithmic decrement of 
nutation and precession oscillations. It takes 
approximately 2041 oscillation angle of nutation and 
precession, and only 164 of torsional vibrations to the 
corresponding amplitudes decreased by a factor e.  

Relations (10) for the damped oscillations can be 
written as: 

)cos( 22020
0 etneLAL tk

Ñ   , 

)cos( 31010
0 etneLAL tk

С   .       (20) 

Therefore, the projection of the center of mass of 
the pendulum on a horizontal plane (oξζ) will have to 
describe not closed, and tapered curves Lissajous that 
after a sufficiently long time, contracted to a point, and 
the pendulum stops. In particular, the conical pendulum 
swings will occur so that the nutation angle will decrease 
with time, and the projection of the center of mass C will 
describe the tapered logarithmic spiral, until the 
pendulum stops. The damped oscillations will be plane-
polarized, if е2–е1 = (2k+1)π/2 (k = 0, 1, 2, …), or if 
initial angular momentum about the vertical axis is equal 
to zero [1].  

In the linear theory the principle of superposition; 
natural frequencies and damping coefficient do not 
depend on the initial conditions. Moreover, such 
variations have the property isochronism which consists 
in that, at zero initial velocity time during which the 
system moves from its initial position to its equilibrium 
position, regardless of the initial deflection. 
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