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In this article study of free linear oscillations of the
pendulum seismic model with a sufficiently low speed in a
sufficiently small spatial region around its stable equilibrium
position (0 = y = ¢ = 0). The study was conducted in the
modified Euler coordinates. The equations of motion and other
relationships outside forces assumed to be zero, deterred
members of the first order, the members of the second and
higher order neglected.

Hamilton’s equations to have a symmetric
pendulum in the modified coordinate system, according
to [1], will be as follows:
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where the Hamiltonian H * expressed in terms of the
momenta of the natural system as:
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generalized forces and can be represented as:
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Investigate the free linear oscillations of the
pendulum seismic model with a sufficiently low speed in
a sufficiently small spatial region around its stable
equilibrium position (6 = y = ¢ =0) [1,2]. The study will
be carried out in the modified Euler coordinates. The
equations of motion and other relations (1) — (4) we put
the external force equal to zero, and retain members of
the first order, neglecting terms of second and higher
order. From these relations we eliminate the generalized
momenta.

As a result, we obtain a system of equations of the
second order with respect to the angular coordinates:

O+2k, 0+’ 0 =0, w+ 2k, p+nly =0,

o+ 2k, p+n;p=0. (5)

where . = — — damping factor, ni, n2, n3 — own cyclic
0

oscillation frequency, with:
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As can be seen from (5) the angular coordinate
system (y, 0, ¢) is the main. Each main coordinate is
described by its equation independently of the other
angular coordinates. In the linear approximation, the
exchange of energy between the degrees of freedom
occurs.

Consider own sustained oscillations, which are
described by the system of equationS'

0+n]0 0; t//+n2w 0; (p+n3(o 0. (7)

Relations (6) are well-known expressions for the
vertical and torsional oscillations of the pendulum. For
symmetric pendulum n;=n,=n. Using data about the
model pendulum (pendulum, located at the station
"Medeo" [3]), we estimate the natural frequencies and
periods of linear oscillations of the pendulum:

ny = hy, =2,56 Hz, n; = 19,48 mHz,

o~
=

2 2 .
T, =— =2,455ec, T3 =— = 5,375 min.
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That is the order of the cyclic frequency of
precession and nutation oscillations of hertz, and
torsional vibration - millihertz. Accordingly, the periods
of precession and nutation oscillations are seconds and

torsion - tens of minutes, L 7,6-107 «l.
n
Note that the oscillations described by the system
of equations (7), are harmonic oscillations. The solution
of equations (7), using the initial conditions can be
written as:

O(t)=A cos(nt+e), w(t)=A,cos(nt+e,),
@(1) = 4, cos(nyt +e;), (8)

where the amplitudes A;, 4, A3, and the initial
phases of e;, e, esare defined as:

(€))

Trajectory, which describes the projection of the
center of mass of the pendulum on a horizontal plane
(0&C) describes the relations [1,2]:

Sy =Ly =—A,L cos(nyt+e,),

Cy=—-L,0=AL,cos(nt+e)). (10)
Consequently, the pendulum moves so that the
projection of its center of mass on the horizontal plane
describes a Lissajous curve, and it performs torsional
oscillation around the axis OZ. If the frequency ratio
ni/ny is a rational number, then the Lissajous figures -
closed curves; if not, the Lissajous curves - make, and
the pendulum will never return to the original point. If
ni= ny (symmetric pendulum), the Lissajous figures are
in the shape of an ellipse, and the projection onto the
horizontal plane of oscillation will be elliptically
polarized. If A1=A4,, the oscillations will be circularly
polarized. If the phase difference e;—e1=(2k+1)7/2 (k= 0,
*1, £2, ...), the ellipse degenerates into a line segment,
and the vibrations are plane-polarized (linearly
polarized), and the pendulum will oscillate a fixed
vertical plane and twisted around its axis. Since the
design of the pendulum such that J=J, and therefore,
ni=n, then the oscillations are close to elliptically
polarized, but the path will, in general, not closed.
Fluctuations are linearly polarized for a symmetric
pendulum (see. (10)), when the initial conditions are
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Multiply the first equation (7) by , the second —

onl/ , the third — on @ . Due to the current and integrate

over time. Obtain the law of conservation of the total
energy E of a conservative system:

1 o2 o 2 o2
E=2(Jx6? +Jw +J,9 J+

+%(MLOg(92 +r,u2)+cqo2)= const (11)
where the first term in parentheses — the kinetic energy,
the second — the potential energy of the system, which
consists of a potential energy due to gravity and the
force of elasticity of the filament. Moreover, it will be
the law of conservation of the total energies of nutation,
precession and rotational motions:

.2
E, =1(Jx d +MLOg(92J= C, = const,

1 o 2
Ew =5(J},w +ML0ggt/2J =Cw = const,

TaE (12)
E, =E(ngp +Cq02] =C, = const.

Note that for a symmetric pendulum when
Ay = Az, e1 — e (2k+1)n/2, (6) it follows that

1/12 + 62 = const , and then the cosine of the angle of

the thread of the pendulum with the vertical axis
Psonconstant. Consequently, the pendulum in this case
makes a conical motion and twists around the axis OZ.
Let us pass to the consideration of the damped
oscillations of the pendulum, to which we turn to the
equations (5). Consider, for example, the first equation
(5). For the rest of equations (5), the results are similar.
Solutionofthefirstequation (5) intheform:

0 =Ce". (13)
Substituting (13) into the first equation (5), we
obtain the characteristic equation:

A +2k,A+n] =0, (14)
whose decisions:
A, =—ktik, k =+n’ —k; , (15)

with the proviso that n>ko. The real part of A is the
damping factor, and the imaginary part of A is the natural
frequency of oscillation, with kij<n;. The value of the
natural frequency of the damped oscillations kidecreased
due to the forces of friction.

When n;>kosolution of the first equation (5) can
be written as:
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O(t) = Ae™ -cos(kt+e,), (16)

where the amplitude 4, and phase shift are determined
from the initial conditions:

G0+ k0, 6’o+ k.6,
k, Ok,
Conditional period T, the logarithmic decrement

qiand the relaxation time t of damped oscillations are
defined as:

s 1 =

A = |6+ .(17)

T = 27[ b} q] =1n Al(t) N :kOY—I :Ls
h A +Ty) N,
1
T :NT =—, 18
1 171 ko ( )

where N— number of oscillations, after which the
amplitude is reduced by a factor e, and 7;— time required
for this. When n;<ko coefficients 1,, 1, are real and
negative, so that the motion will be aperiodic with two
damping coefficients. The rate of change of energy,
similar to (11), (12), for the damped oscillations take the
form:

. 2
E,= ;(Jx o +MLOg92] =C, = const,

1 . 2
E, = E(J}, W +MLOgy/2J= C, = const,

YaE (19)
E, ZE(JZ 0+ C@zj =C, = const.

Where @, @y, @, ®,— power dissipative forces and the
corresponding power dissipative forces on the angular
coordinates. Note that the exchange of energy between
the degrees of freedom for the damped oscillations of the
linear system does not occur.

We estimate the conditional oscillation periods 71,
T», T3, logarithmic decrement qi, ¢2, g3, the relaxation
oscillation 71 = 7> = 73 = 7 for the model of the pendulum
by the damping coefficient ky=0,2MHz, which belongs
to the practical range of operating seismic pendulum [4],
leaving the other parameters the same pendulum.
Relaxation time for all the oscillations is the same:

7 =—=1 hour 23 min 33 sec;

ko
the other parameters have the following numerical
values:

1, =T, =2,45sec, T,=5,375 min,
N, =N, =2041, N, =16,

g, ~ g, =0,00049, g, = 0,0625.

As can be seen from the above estimates,
conditional periodsTi, 7>, T3, do not differ from the
corresponding periods of sustained oscillations, due to
the smallness of the damping coefficient. Logarithmic
decrement for torsional vibrations about 127,5 times
higher than the corresponding logarithmic decrement of
nutation and precession oscillations. It takes
approximately 2041 oscillation angle of nutation and
precession, and only 164 of torsional vibrations to the
corresponding amplitudes decreased by a factor e.

Relations (10) for the damped oscillations can be
written as:

Sy =

Therefore, the projection of the center of mass of
the pendulum on a horizontal plane (0&) will have to
describe not closed, and tapered curves Lissajous that
after a sufficiently long time, contracted to a point, and
the pendulum stops. In particular, the conical pendulum
swings will occur so that the nutation angle will decrease
with time, and the projection of the center of mass C will
describe the tapered logarithmic spiral, until the
pendulum stops. The damped oscillations will be plane-
polarized, if e;—e; = k+1)n/2 (k= 0, £1, £2, ...), or if
initial angular momentum about the vertical axis is equal
to zero [1].

In the linear theory the principle of superposition;
natural frequencies and damping coefficient do not
depend on the initial conditions. Moreover, such
variations have the property isochronism which consists
in that, at zero initial velocity time during which the
system moves from its initial position to its equilibrium
position, regardless of the initial deflection.

~Lyy =—A,L,e”™ cos(nyt +e,),
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