## ИЗВЕСТИЯ ВУЗОВ № 3, 2014

## Жеенбаев Н.Ж.

## ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОГО РЕЖИМА ДУГОВЫХ ГЕНЕРАТОРОВ ПЛАЗМЫ ДЛЯ РЕШЕНИЯ ЭКОЛОГИЧЕСКИХ ЗАДАЧ

## N.Zh. Zheenbaev

# TEMPERATURE REGIME DETERMINATION OF THE PLASMA ARC GENERATOR TO SOLVE ECOLOGICAL TASKS

УДК: 530:145:539.1(04)

В работе представлены результаты измерений газовой температуры по распределениям вращательных линий молекулярной полосы N2<sup>+</sup> в области проведения спектрального анализа жидкостей дугового генератора плазмы ДГП-50.

The results of the gas temperature measurements carried out in the area of spectral analysis of liquids in the plasma arc generator DGP-50 are presented in this work. Temperature's measurements are made by distribution of rotational lines in  $N_2^+$  molecular band.

Применение дуговых генераторов плазмы для решения экологических задач, в первую очередь, при проведении спектрального анализа жидких проб, включая природные и питьевые воды, требует знания его температурного режима, включая пространственное распределение, для выбора оптимальной зоны анализа. Среди разнообразных источников возбуждения спектров основным требованиям спектрального анализа природных, питьевых, термальных и иных вод наиболее полно отвечает двухструйный плазматрон ДГП-50 [1]. При спектральном анализе жидкостей в потоке плазмы ДГП-50 к оптимальной рабочей области следует отнести место до слияния плазменных струй [2], формируемой за счет варьирования параметров разряда, прежде всего силы тока, однако измерения температуры газа на данном участке практически не проводились. В этой связи актуальным является знание пространственного распределения температуры газа в рабочей области двухструйного плазматрона ДГП-50 до слияния струй в зависимости от условий в рассматриваемой разрядной зоне.

Для измерения температуры в области ниже слияния струй по распределениям во вращательной структуре электронных спектров молекул использовались полосы первой отрицательной системы молекулярного иона азота. Измерения поступательной (газовой) температуры проводились при силах тока I=70, 85, 100А и расходе плазмообразующего газа G=4.6 л/мин. Рабочим и транспортирующим газами являлся аргон. Угол наклона катодного и анодного головок плазматрона составлял  $\beta = 120^{\circ}$ . Температура измерялась в области протяженного потока плазмы на расстоянии 10 мм от среза сопел

при введении водного раствора. Излучение от приосевых участков разряда через однолинзовую систему освещения фокусировалось на всю высоту (H=15 мм) щели спектрографа шириной 20 мкм. разрешительная способность Высокая при регистрации молекулярных спектров достигалась вследствие использования спектрографа ДФС-13-2 (решетка 1200 штр./мм) и фотоэлектронной кассеты (ФЭК-9) с 9 ПЗС. Применение ФЭК-9 также позволило усовершенствовать процесс регистрации спектров за счет его автоматизации.

Газовая температура измерялась по распределениям вращательных линий электронно-колебательной полосы (переход  $B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+$ ) первой отрицательной системы молекулярного иона азота  $N_2^+$ . Исследовались вращательные распределения R-ветви колебательной полосы 0-0 первой отрицательной системы молекулярного иона азота  $N_2^+$ . Данная молекулярная система была выбрана для диагностических измерений в связи с тем, что является наиболее яркой в регистрируемых спектрах, а также то, что вращательная структура ее полос надежно разрешается используемой спектральной аппаратурой начиная от линий с вращательным квантовым числом J=2 вплоть до линий с J=50.

Тщательная работа по идентификации длин волн вращательных линий R-ветви была проведена нами согласно [3]. В таблице 1 приведены данные по длинам волн (до J=29) линий R-ветви во вращательной структуре 0-0 полосы, перехода  $(B^2\Sigma_u^+ \rightarrow X^2\Sigma_g^+)$  молекулярного иона азота.

Таблица 1.

Длины волн вращательных линий 0-0 полосы первой отрицательной системы N2<sup>+</sup>.

| № | Вращатель<br>ная линия<br>R-ветви | Длина<br>волны<br>(Å) | №  | Вращатель-<br>ная линия<br>R-ветви | Длина<br>волны<br>(Å) |
|---|-----------------------------------|-----------------------|----|------------------------------------|-----------------------|
| 1 | R0                                | 3909.7                | 16 | R15                                | 3894.7                |
| 2 | R1                                | 3909.0                | 17 | R16                                | 3893.4                |
| 3 | R2                                | 3908.3                | 18 | R17                                | 3892.0                |
| 4 | R3                                | 3907.6                | 19 | R18                                | 3890.5                |
| 5 | R4                                | 3906.7                | 20 | R19                                | 3889.0                |

### ИЗВЕСТИЯ ВУЗОВ № 3, 2014

| 6  | R5  | 3905.9 | 21 | R20 | 3887.5 |
|----|-----|--------|----|-----|--------|
| 7  | R6  | 3905.0 | 22 | R21 | 3885.9 |
| 8  | R7  | 3904.0 | 23 | R22 | 3884.3 |
| 9  | R8  | 3903.0 | 24 | R23 | 3882.6 |
| 10 | R9  | 3901.9 | 25 | R24 | 3880.9 |
| 11 | R10 | 3900.8 | 26 | R25 | 3879.1 |
| 12 | R11 | 3899.7 | 27 | R26 | 3877.3 |
| 13 | R12 | 3898.5 | 28 | R27 | 3875.4 |
| 14 | R13 | 3897.3 | 29 | R28 | 3873.5 |
| 15 | R14 | 3896.0 | 30 | R29 | 3871.6 |

Пример разрешенного спектра полосы (0-0) первой отрицательной системы полос (переход  $N_2^+(B^2\Sigma_u^+, v'=0, J') \rightarrow N_2^+(X^2\Sigma_g^+, v''=0, J''))$ , полученный в спектре излучения ДГП-50 приведен на рис. 1. В соответствии с правилами отбора в спектре наблюдаются две интенсивные ветви: R-ветвь и Pветвь.



Рис. 1. Общий вид вращательного распределения R-ветви колебательной полосы 0-0 первой отрицательной системы молекулярного иона азота N2<sup>+</sup> в спектре излучения плазмы ДГП-50 при вводе жидкости.

Анализ вращательной структуры спектра позволил выбрать линии свободные от переналожений и, следовательно пригодные для измерений. Для определения температуры была выбрана R-ветвь, поскольку наиболее интенсивные вращательные линии P-ветви образуют кант молекулярной полосы (кант полосы – 3914.4 Å) и плохо разрешены. В спектре происходит чередование интенсивностей, связанное с ядерным спином.

Фактор Хенля-Лондона для исследуемой электронно-колебательной полосы первой отрицательной (1<sup>-</sup>) системы молекулярного иона азота определяется равенством  $S_{kk}$ :=k [4], где k – вращательное квантовое число, характеризующее момент импульса молекулы без учета спина. Для молекулярного иона азота (N<sub>2</sub><sup>+</sup>) расстояние между двумя соседними подуровнями с j<sub>1</sub>=k+1/2 и j<sub>2</sub>=k-1/2 для данного k очень мало по сравнению с расстоянием между двумя соседними вращательными уровнями. Другие значения констант молекулярного перехода N<sub>2</sub><sup>+</sup>(B<sup>2</sup>Σ<sub>u</sub><sup>+</sup> → X<sup>2</sup>Σ<sub>g</sub><sup>+</sup>) использовались из [5] и представлены в таблице 2.

Таблица 2.

Молекулярные константы  $B^2 \Sigma_u^+$  и  $X^2 \Sigma_g^+$  – состояний (в см<sup>-1</sup>).

| Co        | стояние В²Σu <sup>+</sup> | Состояние $X^2\Sigma_{g}^+$ |         |  |
|-----------|---------------------------|-----------------------------|---------|--|
| V         | 0                         | v                           | 0       |  |
| $B_{\nu}$ | 2.073                     | $B_{v}$                     | 1.92229 |  |
| $D_{v}$   | -                         | $D_{v}$                     | 0.00592 |  |
| Be        | 2.085                     | Be                          | 1.932   |  |
| α         | - 0.002                   | α                           | -       |  |
| $	au_{v}$ | 0.063.10-6                |                             | -       |  |
| Avv'      | $1.24 \cdot 10^7$         |                             |         |  |

Вращательный терм F<sup>v</sup>(k) имеет вид:

$$F^{\nu}(k) = B_{\nu}k(k+1) - D_{\nu}k^{2}(k+1)$$
(1)

где k — квантовое число полного момента импульса без спина;  $B_{\nu}$ ,  $D_{\nu}$ , — параметры не зависящие от k.  $A_{\nu}$  — вероятность перехода из состояния  $B^2 \Sigma_u^+$  в  $X^2 \Sigma_g^+$  в сек<sup>-1</sup>;  $\tau_{\nu}$  — время жизни состояния  $B^2 \Sigma_u^+$  в сек.

Вращательная постоянная *B<sub>v</sub>* определяется следующим выражением:

$$B_v = B_e + \alpha (v + 1/2) \tag{2}$$

На рис. 2. представлена характерная для всех режимов измерений зависимость величины ln(Ikk/ /  $S_{kkl}$ ) от k(k+1), где  $I_{kkl}$  – интенсивность вращательной линии перехода  $k \rightarrow k^{I}$ ,  $S_{kkI}$  – фактор Хенля-Лондона, k и k<sup>I</sup> – квантовые вращательные числа. Прямолинейный характер зависимости на рис. 2 говорит в пользу больцмановского распределения молекул в электронно-возбужденном состоянии. что И позволяет ввести понятие вращательной температуры в возбужденном состоянии. Учитывая, далее то, что при атмосферном давлении в данном виде разряда время между последовательными столкновениями молекул гораздо меньше радиационного времени жизни  $\tau_v$  состояния  $N_2^+$  ( $B^2\Sigma_u^+$ ), можно говорить о совпадении вращательной температуры молекул  $N_2(X^1\Sigma^+)$  и молекулярных ионов азота  $N_2(X^1\Sigma_g^+)$  в основных электронных состояниях, которую в дальнейшем отождествляем с поступательной температурой тяжелых частиц.



**Рис. 2.** Зависимость величины ln(*I*<sub>kkl</sub> / *S*<sub>kkl</sub>) от k(k+1) для вращательной структуры молекулярного иона азота.

Измерив относительную интенсивность вращательных линий и используя соответствующие факторы интенсивности, по углу наклона прямой, являющейся графиком зависимости натурального логарифма отношения интенсивностей линий к факторам Хенля-Лондона от вращательной энергии уровней можно определить температуру газа [6].

На рис. 3. представлены результаты измерений поступательной (газовой) температуры в потоке плазмы в зависимости от различных величин силы тока, подаваемой в ДГП-50 в области до слияния плазменных струй. За точку измерений взято расстояние 10 мм от среза сопел.



Рис. 3. Зависимость температуры потока плазмы от силы

тока в области до слияния струй на расстоянии от среза сопел H = 10 мм.

Таким образом, измерено распределение температуры в области до слияния плазменных струй в зависимости от силы тока. Температура газа в нижней точке измерений (10 мм) изменяется от порядка 3000°К при 70А до 4000°К при силе тока 100А. Результаты определения температурного режима, полученные в настоящей работе могут быть использованы, главным образом, при проведении спектрального анализа экологических объектов на плазматроне ДГП-50. Это объясняется тем, что в данной работе рассмотрен практический пример с реализацией оптимальных условий для его успешного решения. Конечно же, использование полученных температурных данных далеко не ограничивается этим примером и может быть расширено за счет использования в других областях деятельности. Поэтому следует учитывать, что в работе представлен общий подход с обоснованием методов измерения необходимых для решения поставленных задач.

#### Литература:

- Урманбетов К., Таштанов Р.А., Жеенбаев Ж. Атомноэмиссионный спектральный анализ природных вод на установке «НУР» // Известия НАН КР. 1998. № 4. С. 23-27.
- 2. Доржуева Г.Ж. Атомно-эмиссионное определение тяжелых металлов в жидкой пробе с возбуждением спектров на установке «НУР» // Наука и новые технологии. 2006. № 1. С. 13-18.
- 3. Robben F., Taubot L. Measurements of rotational temperatures in a low density wind tunnel. // Phys.Fluids., 1966, v.9, №44, p.644-652
- А.Гейдон. Энергии диссоциации и спектры двухатомных молекул. пер. с англ. под ред. М.Волькенштейна. // М.:Издательство иностранной литературы., 1949, стр.38-39.
- А.А.Радциг. Справочник по атомной и молекулярной физике. / А.А.Радциг, Б.М.Смирнов – М.: Атомиздат, 1980, 240 стр.
- Жеенбаев Н.Ж. Диагностика неравновесной плазмы капиллярного разряда волноводного CO<sub>2</sub> лазера. // Б., Илим, 1995, 95 стр.

#### Рецензент: д.ф.-м.н. Кидибаев М.