ИЗВЕСТИЯ ВУЗОВ, № 3, 2011

Машеков С.А., Бекмуханбетова Ш.А., Нугман Е.З.

СИСТЕМА АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ СКОРОСТНОГО РЕЖИМА ПРОКАТНОЙ КЛЕТИ НОВОГО СТАНА ГОРЯЧЕЙ ПРОКАТКИ ТОНКИХ ПОЛОС С ОБЕСПЕЧЕНИЕМ МИНИМАЛЬНОГО НАТЯЖЕНИЯ В МЕЖКЛЕТОВЫХ ПРОМЕЖУТКАХ (Сообщение 2)

S.A. Mashekov, S.A. Bekmuhanbetova, E.Z. Nugman

AUTOMATIC CONTROL SPEED NEW REGIME ROLL STAND HOT ROLLING MILL THIN STRIPS WITH MINIMUM TENSION IN BETWEEN CELLS INTERVALS (Message 2)

УДК: 621.313.333

В статье рассмотрено система автоматического регулирования скоростного режима прокатной клети нового непрерывного стана горячей прокатки тонких полос с обеспечением минимального натяжения в межклетевых промежутках. Представлена система уравнений механической системы, учитывающая процессы деформации металла при прокатке с обжатием в клетях и позволяющая проводить анализ динамических свойств.

The article deals with the automatic control system of high-speed re-benching roll stand of a new continuous hot rolling of thin strips with minimum tension in mezhkletevyh intervals. Shows a system of equations of a mechanical system that takes into account the processes of deformation of the metal during rolling with a reduction in the stands and allows the analysis of dynamic properties.

Расчет нормальных контактных напряжений и усилия прокатки производили по следующим формулам: - первая клеть: по результатам исследования, с применением множественного регрессионного анализа на основе формулы Симпсона, в работе [1,2] разработана модель для определения усилия прокатки тонких полос в чистовой группе ШСГП (широкополосный стан горячей прокатки). В первой клети, где возникает упругое сжатие полосы длиной д $\Gamma_{1\text{упр}}$ и пластическая деформация длиной χ_{tynp} , представляющего зоны скольжение и прилипания, для расчета нормальных контактных напряжений и усилия прокатки использовали вышесказанную модель в виде:

$$P_{1} = \alpha_{p} \sigma_{\phi,nn} Q_{p} \left(1 - \frac{q_{0} + q_{1}}{2.3 \sigma_{\phi,nn}} \right) l b, \qquad (1)$$

где q_0 и q_1 – заднее и переднее удельные натяжения;

 Q_{ρ} – коэффициент, учитывающий влияние контактного трения, внешних зон и ширины полосы. На основании графических данных Симпсона в работе [1] построили следующую аппроксимацию:

$$Q_p = 0.692 + 0.008 \frac{R}{h_1} + 1.984\varepsilon + 0.016\varepsilon \frac{R}{h_1} - 2 \cdot 10^{-6} \left(\frac{R}{h_1}\right)^2 - 1.188\varepsilon^2, \tag{2}$$

где α_p - коэффициент адаптации. В работе [3] множественным регрессионным анализом экспериментальных данных получили:

$$\alpha_p = 0.2527 + 13.8433(1 - 0.0205\varepsilon + 0.2485k_t)Q_p \sqrt{\frac{h_1}{R} \frac{\varepsilon}{1 + \varepsilon}},$$
 (3)

где R - радиус бочки рабочего валка;

 ε – относительное обжатие;

 h_1 – толщина переднего конца полосы;

 $k_l = l_{cl}/l_{x}$ – сплющивание:

$$k_{I} = 1 + 3.95 \cdot 10^{-6} \sigma_{\phi,n\tau} \frac{R}{h_{I}} \sqrt{\frac{1+\varepsilon}{\Gamma - \varepsilon}}; \tag{4}$$

 $l_{\rm cl}$ и $l_{\rm x}$ – длина очага деформации с учетом и без учета сплющивания рабочих валков;

- вторая, третья, четвертая клеть: для расчета средних значений нормальных контактных напряжений, возникающих во второй, третьей, четвертой клетях использовали уравнение, приведенное в таблице 2 [1,2].

Таблица 2 Формулы для расчета средних значений нормальных контактных напряжений [1]

Участок	Формула
Упругий участок длиной х _{Іупр}	$p_{1} = 1,15E_{\Pi} \left\{ \frac{1}{\delta_{i-1}} + \frac{L}{\delta_{i-1}} \left[\left(\frac{\delta_{i-1} - 1}{(\delta_{i-1} + 1)\delta_{i-1}} - \frac{q_{0}}{1,15E_{\Pi}} \right) \left(D^{\delta_{i-1} + 1} - 1 \right) - 2\ln D \right] \right\},$
	rme $\delta_{i-1} = \frac{\mu_i}{tg \alpha/2}; \ D = \frac{E_{\Pi}}{E_{\Pi} - \sigma_{\phi,m}}; \ L = \frac{E_{\Pi} - \sigma_{\phi,m}}{\sigma_{\phi,m}}$
Зона прилипания длиной x_{nn}	$p_{2,3} = \frac{2\tau_s}{h_{2ynp} - h_{1ynp}} \left[\left[1 + \frac{0.5}{tg \alpha/2 \left(h_{1ynp} - h_{H} \right)} \right] \left[h_{2ynp} \left(\ln h_{2ynp} - 1 \right) - h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left(\ln h_{1ynp} - 1 \right) \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_{1ynp} - 1 \right) \right] - \frac{1}{t_{1ynp}} \left[h_{1ynp} \left(\ln h_$
	$-\frac{0.25(h_{2ynp}^2 - h_{1ynp}^2)}{tg \alpha/2(h_{1ynp} - h_{H})} + \frac{p_{1ynp}}{2\tau_s} + \frac{0.5}{tg \alpha/2} \frac{h_{1ynp}}{(h_{1ynp} - h_{H})} -$
	$- \left[1 + \frac{0.5}{tg \alpha/2} \frac{h_{\rm H}}{(h_{\rm lynp} - h_{\rm H})} \right] \ln h_{\rm lynp} (h_{\rm lynp} - h_{\rm lynp}) - \right\}$
Упругий участок длиной х ₂	$p_{4} = 1{,}15E_{\Pi} \left\{ \frac{1}{\delta_{i}} + \frac{L}{\delta_{i} + 1} \left[\left(\frac{\delta_{i} - 1}{(\delta_{i} + 1)\delta_{i}} - \frac{q_{1}}{1{,}15E_{\Pi}} \right) \left(D^{\delta_{i} + 1} - 1 \right) - 2\ln D \right] \right\}$

Примечание. $h_{\rm lynp}$ – толщина полосы на границе первого упругого и пластического участков; $h_{\rm lynp}$ – толщина полосы на границе второго упругого и пластического участков; р_{јупр} – значение пормального контактного напряжения.

По известным средним значениям напряжений на каждом из трех участков среднее для всего очага деформации нормальное контактное напряжение прокатки вычисляют по формулам:

$$p_{epi} = \frac{1}{l_{ei}} \left(p_1 x_{1ynp} + p_{2,3} x_n + p_4 x_2 \right)$$
 (5)

- пятая клеть: так как на упругих участках и участках скольжения очага деформации действует закон трения скольжения для оценки контактного (удельного) давления $p_{\rm cp}$ использовали формулу А.И. Целикова [4] : $p_{\rm cp} = 1.15 \; \{ [x_{0i} \; \sigma_{\rm s0i} \; h_0/(d-2)] \; [(h_0/h_{\rm ii})^{\rm d-2} - 1] + \\ [x_{1i} \; \sigma_{\rm s1i} \; h_1/(d+2)] \; [(h_0/h_{\rm ii})^{\rm d+2} - 1] \} / \Delta h, \tag{6}$

$$p_{cp} = 1,13 \{ [x_{0i} \ \sigma_{s0i} \ h_0/(d-2)] [(h_0/h_1)^{1/2} - 1] + x_{1i} \ \sigma_{s1i} \ h_1/(d+2)] [(h_1/h_1)^{d+2} - 1] \}/\Delta h,$$
 (6)

где h_0 , h_1 — толщина полосы на входе и на выходе из очага деформации;

 $x_{0i} = 1 - q_{0i}/(1,15\sigma_{s0i})$ – коэффициент, характеризующий влияние переднего натяжения на p_{c0} ;

 $x_{\rm hi} = 1 - q_{\rm h}/(1,15\sigma_{\rm sh})$ — коэффициент, характеризующий влияние заднего натяжения на $p_{\rm co}$;

 $d=2\mu\ l_n/\Delta h$ — параметр очага деформации (по Целикову А.И.); $h_{\rm H}=\left[x_{0i}/x_1\ (h_0)^{d-1}(h_1)^{d+1}\right]^{1/2d}$ - толщина полосы в нейтральном сечении (в сечении, при котором меняется знак касательных напряжений);

 q_{0i}, q_{1i} — натяжение на входе и на выходе из очага деформации;

 $\sigma_{\rm s0i}$, $\sigma_{\rm s1i}$ – сопротивление пластической деформации на входе и на выходе из очага деформации;

 μ — коэффициент внешнего трения;

 $\Delta h = h_0 - h_1$ – абсолютное обжатие.

Для расчета усилия прокатки во втором, третьем, четвертом и пятом клетях использовали известную формулу [1,2]

$$P = p_{coi} \cdot l_{ci} \cdot b, \tag{7}$$

где b - ширина прокатываемой полосы;

Длина контактной поверхности (длина дуги захвата) вычисляется по следующей формуле (без учёта сплющивания валков):

$$l = \sqrt{R \cdot \Delta L}$$

где $h - H = \Delta h$ — разница толщины полосы металла на входе и выходе из клети

Натяжение в межклетевом промежутке определяется по формуле Д.П. Морозова. Для промежутка между клетями i и i+1 формула будет иметь вид

$$\frac{dT_{i,i+1}}{dt} = \frac{E \cdot Q_{i,i+1}}{L_{i,i+1}} \left(\vartheta'_{i+1} - \vartheta_i \right) \tag{8}$$

где E – модуль упругости прокатываемого материала; $Q_{i,i+1}$ – поперечное сечение полосы на участке между клетями i и i+1; $L_{i,i+1}$ — длина межклетевого промежутка; v_i — скорость металла на выходе из клети i; \mathcal{G}'_{i+1} скорость металла на входе в i + 1 клеть.

Исходя из уравнения постоянства секундных объемов для клетей непрерывного стана, физическая сущность которого заключается в том, что количество металла, проходящего в единицу времени через любое сечение, должно быть одинаково, определяется скорость металла на входе в i+1 клеть [4]:

$$\vartheta_{i+1}h_{i,i+1} = \vartheta'_{i+1} \cdot h'_{i+1}.$$
 (9)

Следовательно, формула позволяющий определить скорость металла в любом сечении ϑ_{i+1}' будет иметь вид

$$\vartheta_{i+1}' = \vartheta_{i+1} \cdot \frac{h_{i+1}}{h_{i+1}'}, \tag{10}$$

где h'_{i+1} – толщина полосы в любом сечении очага деформации.

Время τ необходимое для прохождения полосой расстояние между клетями i и i+1 со скоростью v_i в большинстве случае можно принять

$$\tau_i = \frac{L_{i,i+1}}{v_{io}},\tag{11}$$

где v_{i0} – «фиксированная» скорость выхода металла из i клети, в рассматриваемом случае это скорость выхода металла из клети і, определяемая скоростью валков клети и опережением для клети і.

Уравнение движения для прокатной клети имеет вид

$$M_{\partial s} = M_{np} + M_{mp} + M_{x,x} \pm M_{y} \pm M_{\phi},$$
 (12)

где $M_{
m mp}$ – момент прокатки, необходимый для осуществления деформации металла в очаге деформации; $M_{
m mp}$ – момент добавочных сил трения, возникающих от действия давления метапла на валки в подшипниках валков и в других частях кинематической системы клети; $M_{
m x,x}$ – момент холостого хода, требующийся для привода стана при холостом ходе; $M_{\rm H}$ – момент от действия приложенного к полосе натяжения; $M_{\rm H}$ – динамический момент, необходимый для преодоления инерционных усилий вращающихся частей кинематической цепи клети;

$$M_o = J \cdot \frac{d\omega}{dt},\tag{13}$$

где J- суммарный момент инерции вращающихся масс, приведенный к валу электродвигателя; $d\omega/dt-$ ускорение привода.

Выражение для момента прокатки имеет вид

$$M_{np} = 2 \cdot P \cdot \psi \cdot \sqrt{R \cdot \Delta h}, \tag{14}$$

где P — полное давление металла на валки; ψ — коэффициент плеча момента, равный отношению длины плеча момента к длине дуги захвата; согласно экспериментальным данным, ψ = 0,45 — 0,5 для горячей прокатки.

Момент дополнительных сил трения в линии привода клети стана представляет собой сумму

$$M_{mp} = M_{mp1} + M_{mp2} + M_{mp3} + M_{mp4}, (15)$$

где $M_{\rm pp1},\,M_{\rm rp2},\,M_{\rm rp3},\,M_{\rm rp4}$ – момент сил трения соответственно в подшипниках валков, колесах, шестернях, цепной передаче.

Для упрощения расчетов принимают:

$$M_{mp} = (0.33 \div 0.18) M_{np} + (1.33 \div 1.18) M_{mpl}. \tag{16}$$

 $M_{
m tpl}$ для четырехвалкового стана с приводом через рабочие валки определяют по формуле

$$M_{inp1} = P \cdot d_{on} \cdot f_n \cdot \frac{D_p}{D_{ov}}, \tag{17}$$

где P — полное давление металла на валки; $d_{\rm or}$ — диаметр шейки опорного валка; $f_{\rm n}$ — коэффициент трения в подшипниках опорных валков; $D_{\rm p}$, $D_{\rm or}$ — диаметры бочек соответственно рабочего и опорных валков.

Коэффициент трения в подшипниках валков (подшипников жидкостного трения) равен $f_{\rm n}$ = 0,003 – 0,005.

Момент холостого хода клети определяется как сумма приведенных моментов трения вращающихся деталей клети (валков, шестерен, колес) при нагрузке на подшипники от их собственной массы [4]. На основании практических данных принимают

$$M_{x,x} = (0.05 \div 0.08) \cdot M_{no},$$
 (18)

где $M_{\rm Hg}$ – номинальный момент двигателя главного привода клети.

Момент от приложенного к прокатываемой полосе натяжения определяется по формуле

$$M_{n} = (T_0 - T_1) \cdot R, \tag{19}$$

здесь T_0 , T_1 — соответственно заднее и переднее натяжение.

Для определения динамического момента необходимо знать момент инерции вращающихся частей клети, приведенных к валу двигателя:

$$J = \frac{G_i \cdot r_i^2}{i_n},\tag{20}$$

где G_i , r_i — масса элемента и радиус инерции вращающихся элементов кинематической схемы клети; i_n — коэффициент приведения к валу двигателя (коэффициент редукции).

Представленное математическое описание механической системы позволяет проводить исследование и анализ динамических характеристик, необходимых для синтеза оптимальной системы управления приводами прокатных клетей предлагаемого стана. Исследование данной системы можно проводить на ЭВМ с помощью различных математических пакетов, например, MatLab.

Вышеописанное математическое описание механической системы (см. сообщения 1, 2) можно использовать в следующей последовательности:

- измерение удельного натяжения с помощью бесконтактных датчиков и толщины прокатываемой полосы между клетями с помощью рентгеновских и радиоизотопных измерителей толщины, охватывающих диапазон толщин от 2 мкм до 12 мм (например, использование рентгеновского измерителя толщины для тонколистовых станов горячей прокатки типа ИТТ-5688 с диапазоном измерения толщин от 1,2 до 12 мм, или радиоизотопного измерителя толщины ИТ-5555 с диапазоном измерения толщин от 2 мкм до 0,1 мм, или радиоизотопного измерителя толщины ИТ-5465 для измерения толщин от 0,03 до 1,2 мм, или радиоизотопного измерителя толщины ИТ-5460 для диапазона 0,4 3,0 мм).
- используя ЭВМ расчет энергосиловых параметров прокатки по вышеописанной методике и регулирования толщины полосы на непрерывном стане горячей прокатки новой конструкции. Для регулирования толщины полосы необходимо использовать система автоматического регулирования профиля и формы полосы (САРПФ). Принцип действия системы основан на противоизгибе валков на величину, обеспечивающую устранение коробоватости и волнистости полосы. Сигналы от ЭВМ и от бесконтактных датчиков удельного натяжения, расположенных на выходе раската из клети, поступают на вход блока усиления и логической обработки полосы, где происходит их усиление и сравнение в соответствии с заданным алгоритмом;
- расчет параметров процесса прокатки и моментов приводного двигателя клетей и по сформированным сигналам регулирование скоростного режима непрерывной группы клетей стана новой конструкции;

ИЗВЕСТИЯ ВУЗОВ, № 3, 2011

- расчет параметров процесса прокатки и по сформированным сигналам регулирование скоростного режима четвертой и пятой клетей нового стана за счет передвижение конусообразных колес и шестерен гидроприводным агрегатом (в четвертой и пятой клети колеса и шестерни сделаны с малой конусностью).

Литература:

- 1. Моделирование процесса горячей прокатки широких полос с учетом зоны прилипания в очаге деформации / Э.А. Гарбер, И.А. Кожевникова, П.А. Тарасов // Труды седьмого Конгресса прокатчиков. Москва. -2007. С. 484-492.
- 2. Расчет усилий горячей прокатки тонких полос с учетом напряженно-деформированного состояния в зоне прилипания очага деформации /Э.А. Гарбер, И.А. Кожевникова, П.А. Тарасов Л Производство проката. № 4. -2007. С. 7-15.
- 3. Новый метод энергосилового расчета широкополосных станов горячей прокатки /Э.А. Гарбер, И.А. Кожевникова, П.А. Тарасов // Вестник ЧТУ. № 3. 2008. С. 19-26.
- 4. Целиков А.И., Никитин Г.С., Рокотян С.Е. Теория продольной прокатки. М.: Металлургия, 1980. 318 е., ил.

Рецензент: д.т.н., профессор Поветкин В.В.