Косое В.Н., Нурбай С.Д.

НЕКОТОРЫЕ ОСОБЕННОСТИ ОПИСАНИЯ МНОГОКОМПОНЕНТНОЙ ИЗОТЕРМИЧЕСКОЙ ДИФФУЗИИ ВБЛИЗИ ГРАНИЦЫ СМЕНЫ РЕЖИМОВ «ДИФФУЗИЯ - КОНЦЕНТРАЦИОННАЯ ГРАВИТАЦИОННАЯ КОНВЕКЦИЯ» ПРИ РАЗЛИЧНЫХ ДАВЛЕНИЯХ

V.N.Kosov, S.D. Nurbay

SOME FEATURES OF THE DESCRIPTION OF MULTICOMPONENT ISOTHERMAL DIFFUSION NEAR THE BOUNDARY OF REGIME CHANGE, "DIFFUSION -CONCENTRATION GRAVITATIONAL CONVECTION" AT VARIOUS PRESSURES

УДК: 621.557/01

Проведено сравнение экспериментальных и вычисленных эффективных коэффициентов диффузии многокомпонентных газовых смесей при различных давлениях. Показано, что вблизи границы смены режимов «диффузия - концентрационная гравитационная конвекция», в случае устойчивости механического равновесия смеси, парциальные потоки компонентов могут быть описаны уравнениями Стефана-Максвелла.

Comparing of experimental and calculating effective coefficient of multycomponental gas admixtures diffusion in various pressure was done. At the end of the shift changing "diffusion - concentrative gravitational convection" was shown, in case of mechanical admixture equilibrium stability, partial flow of components can be described by Steven Maxwell equations.

Как показали экспериментальные исследования /1,2/ в поле силы тяжести диффузионный процесс смешения компонентов в газовых смесях может осложняться возникновением конвекции. В этом случае скорость смешения компонентов резко возрастает и безусловный интерес представляет точное знание параметров, которые соответствуют границе перехода «диффузия - гравитационная концентрационная конвекция». В работе /3/ был предложен способ определения границы перехода системы из диффузионной области в конвективную, который заключался в изучении функциональной зависимости безразмерного критерия а, представляющего собой отношение экспериментального парциального потока компонента к вычисленному в предположении диффузии, от варьируемого параметра. Очевидно, что при a > 1 в многокомпонентных системах реализуются условия для существования свободной гравитационной конвекции. В этом случае экспериментальный парциальный поток многократно превосходит диффузионный и вычисление последнего возможно в рамках приближенных кинетических допущений. Однако, для случая возникновения конвекции, когда конвективный и диффузионный потоки сравнимы друг с другом, оценка точности в вычислении последнего значительно повышается и принятые кинетические приближения должны быть соответствующим образом верифицированы.

В данной работе на основе опытных данных по эффективным коэффициентам диффузии (ЭКД) и матрице коэффициентов многокомпонентной диффузии (МКМД), приведенных в /4,5/ восстановлены продиффундировавшие значения концентраций (парциальные потоки) при различных давлениях.. Проведено сравнение опытных данных с вычисленными в рамках кинетического подхода и по методике ЭКЛ /6/.

Кинетическая теория описывает изотермическую диффузию в п-компонентной смеси газов уравнениями Стефана-Максвелла Ш:

$$\nabla x_i = \sum_{j=1}^n \frac{1}{D_{ij}} (c_i J_j - c_j J_i), \quad i = 1, 2, 3, ..., n, \quad i \neq j,$$
(1)

где приняты следующие обозначения: xi - мольная концентрация i-го компонента в смеси; ci = xi/x - мольная доля компонента i-го при мольной концентрации в смеси x; i - плотность диффузионного потока компонента i; Dij - коэффициент взаимной диффузии газов (КВД).

При эквимолярной диффузии
$$\sum_{i=1}^{n-1} J_i = 0$$
, $\sum_{i=1}^{n-1} \nabla x_i = 0$. В этом случае (1) для независимых потоков преобется к виду:
$$J_i = -\sum_{j=1}^{n-1} D_{ij}^* \nabla x_j, \quad i=1,2,3,...,(n-1).$$
 3ии D^*_{ii} , D^*_{ij} образуют МКМД. Из (2) сле-

$$J_i = -\sum_{i=1}^{n-1} D_{ij}^* \nabla x_j, \quad i=1,2,3,...,(n-1).$$
 (2) коэффициенты диффу-

дует, что при диффузии в n -компонентной смеси для (n-1) независимых потоков и (n-1) независимых градиентов необходимо знать $(n-1)^2$ коэффициентов МКМД.

Существенное упрощение расчета и описание многокомпонентной диффузии может быть достигнуто, в случае применения метода ЭКД, по аналогии с Первым законом Фика /8/

$$Ji = -\mathbf{D}i^{3\phi}\nabla x_{l}, \quad i = 1, 2, 3, ..., (n-1), \tag{3}$$

где $\mathrm{D}^{\psi_{i}}$ - ЭКД, характеризующий скорость диффузии компонента в смесь остальных газов.

ИЗВЕСТИЯ ВУЗОВ, № 3, 2011

Как видно из (2) и (3) зная соответствующие коэффициенты переноса и условия проведения эксперимента легко восстановить продиффундировавшие значения концентраций, которые затем можно сравнивать с опытными данными. Однако, очевидно, что в рамках формализма (3) это будет сделать проще из-за меньшего числа определяемых коэффициентов диффузии.

В таблицах 1 и 2 приведены значения экспериментальных концентраций компонентов восстановленных из данных по коэффициентам диффузии /4,5 / и вычисленных в рамках формализма (3). Для расчетных значений концентраций применялась методика 191. При этом КВД для соответствующих условий опыта /4,5/ вычислялись в рамках / 8,10 /.

 $H_2 - 0.6256$ $CH_4 + 0.3744$ C_3H_8 и при различных давлениях и T = 298 К.

 ${\it Tаблица~1}$ Экспериментальные /5,8/ и вычисленные концентрации компонентов систем

0,191	H2	кспериментальны	ые	Но	теоретические	
0.191	H2	CH		112	•	
0.191		СИ,	C_3H_8	H2	CH ₄	C ₃ H ₈
	0,2925	0,1942	0,0903	0,2966	0,1958	0,1074
0,387	0,2329	0,1528	0,0801	0,2204	0,1460	0,0743
Система 0,612	26 H ₂ + 0,192	Концентраг	I ₃ +0,1487 CH ₄ -0,5 ция компонентов,		T ₂ + 0,1546 NH ₃ +0 Теоретические	,1670 CH ₄
	Н2	ZIII UZIBIIBIC	NH ₃	I-	Н2	
	0.0296		0,0209		0,0293	

Tаблица 2 Экспериментальные /4/ и вычисленные значения концентраций компонентов тройной системы $H_2 + CH_4$ - воздух, при различном содержании водорода в смеси, T= 298 K.

Р.МПа	Мольн. доли Н ₂ в смеси	Концентрация компонентов, мольные доли							
		экспериментальные			теоретические				
	Ī	H2	CE,	воздух	H2	CHL,	воздух		
1,07	0,5867	0,1115	0,0144	0,1248	0,1077	0,0144	0,1224		
	0,4482	0,0842	0,0232	0,1057	0,0822	0,0237	0,1060		
	0,2920	0,0546	0,0373	0,0885	0,0539	0,0359	0,0893		
2,06	0,5867	0,0647	0,0074	0,0712	0,0625	0,0069	0,0692		
	0,4482	0,0484	0,0117	0,0578	0,476	0,0119	0,0595		
	0,2920	0,0320	0,0206	0,0484	0,0309	0,0186	0,0496		
3,04	0,5867	0,0454	0,0044	0,0479	0,0438	0,0044	0,0482		
	0,4482	0,0344	0,0085	0,0403	0,0335	0,0078	0,0412		
	0,2920	0,0221	0,0144	0,0338	0,0217	0,0126	0,0344		
4,02	0,4482	0,0265	0,0066	0,0308	0,0258	0,0059	0,0317		
	0,2920	0,0169	0,0098	0,0329	0,0167	0,0093	0,0260		
4,99	0,5867	0,0286	0,0034	0,0288	0,0274	0,0026	0,0299		
	0,4482	0,0221	0,0051	0,0251	0,0209	0,0047	0,0257		
	0,2920	0,0145	0,0080	0,0209	0,0136	0,0076	0,0212		

Как видно из данных приведенных в таблицах 1 и 2 для всех тройных газовых систем, во всем диапазоне давлений наблюдается удовлетворительное согласие между опытными и вычисленными по уравнениям Стефана-Максвелла перенесенным значениям концентраций. Наибольшее отклонение имеет самый тяжелый по плотности компонент системы. Это отмечено у системы $H_2 - CU_4 + C_3H_5$. Такой причиной на наш взгляд выступает не идеальность тяжелого компонента.

ИЗВЕСТИЯ ВУЗОВ, № 3, 2011

Если компоненты, в заданном диапазоне давлений и температуры проявляют себя как идеальные газы, то расхождения между опытными и вычисленными значениями концентраций не превышает нескольких процентов. Также обращает на себя внимание тот факт, что всех исследуемых системах возможно проявление эффектов Тура / 11/.

Однако, их наличие не приводит к существенному отличию экспериментальных значений концентраций от вычисленных в предположении диффузии. Параметр a в этом случае может на несколько процентов отличаться от единичного значения, но эта корреляция существенно меньше чем в случае, когда в системе присутствует концентрационная гравитационная конвекция. Следовательно, можно утверждать, что в системе наблюдается диффузия, когда параметр a близок к значению 1.

Таким образом расчет концентраций компонентов при различных давлениях по уравнениям Стефана- Максвелла удовлетворительно описывает многокомпонентный диффузионный массоперенос в случае устойчивости механического механического равновесия.

Литература:

- 1. Жаврин Ю.И., Косое Н.Д., Белов С.М., Тарасов С.Б. Влияние давления на устойчивость диффузии в некоторых трехкомпонентных газовых смесях // ЖТФ,- 1984. Т. 54, №5. С. 943 947.
- Жарин Ю.И., Косов В.Н. Образование структур и концентрационная конвекция при изотермической диффузии в трехкомпонентных газовых смесях через переменное число каналов равной площади // Письма в ЖТФ.- 1993.- Т. 19, вып. 10,-С. 18-21.
- 3. Косов В.Н., Селезнев В.Д. Аномальное возникновение свободной гравитационной конвекции в изотермических тройных газовых смесях. Екатеринбург, 2004. 149 с.ов
- 4. Сериков Т.П., Жаврин Ю.И., Косов В.Н., Кульжанов Д.У. Исследование диффузии бинарной смеси водорода с метаном в воздух // Нефть и газ. МОН, НАН, НИА РК. 2001.- №2. С. 66 72.
- 5. Zhavrin Yu. I., Kosov V.N., Kuizhanov D.U., Karataeva K.K. Mass transfer in some hydrocarbon containing gas mixtures // Thermophysics and Aeromechanics 2001.- Vol. 8, N2. P. 225 -229.
- 6. Жаврин Ю.И., Косов Н.Д., Новосад З.И. Описание нестационарной диффузии в многокомпонентных газовых смесях методом эффективных коэффициентов // ЖФХ.-1975.- Т.49, №3.- С. 706-709.
- 7. Гиршфельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей.- М.: ИЛ, 1961.- 934 с.
- 8. Ю.И. Жаврин, В.Н. Косов и др. Исследование диффузии в газовых смесях, содержащих компоненты синтеза аммиака// ИФЖ,-2001.- Т. 74, №2.- С. 133 -136.
- 9. Жаврин Ю.И., Косов Н.Д., Косов В.Н. Расчет диффузионного процесса в двухколбовом аппарате для случая многокомпонентной газовой смеси, - Алматы, 1995. - 26 е. - (Деп в КазгосИНТИ 05.07.1195. 6239. Ка-95).
- 10. Шервуд Т., Пигфорд Р., Уилки Ч. Массопередача/ Пер. с англ. М.: Химия, 1982. 695 с.
- 11. Toor H.L., Sehadi C.V., Arnold K.R. Diffusion and masstransfer in multicomponent gas mixtures of ideal gases // A.I.Ch.E. Journal. 1965. Vol. II, N4.- P. 746-747,755.

Рецензент: д.т.н., профессор Ильенков В.Д.

20